ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iineq1 GIF version

Theorem iineq1 3941
Description: Equality theorem for restricted existential quantifier. (Contributed by NM, 27-Jun-1998.)
Assertion
Ref Expression
iineq1 (𝐴 = 𝐵 𝑥𝐴 𝐶 = 𝑥𝐵 𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem iineq1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 raleq 2702 . . 3 (𝐴 = 𝐵 → (∀𝑥𝐴 𝑦𝐶 ↔ ∀𝑥𝐵 𝑦𝐶))
21abbidv 2323 . 2 (𝐴 = 𝐵 → {𝑦 ∣ ∀𝑥𝐴 𝑦𝐶} = {𝑦 ∣ ∀𝑥𝐵 𝑦𝐶})
3 df-iin 3930 . 2 𝑥𝐴 𝐶 = {𝑦 ∣ ∀𝑥𝐴 𝑦𝐶}
4 df-iin 3930 . 2 𝑥𝐵 𝐶 = {𝑦 ∣ ∀𝑥𝐵 𝑦𝐶}
52, 3, 43eqtr4g 2263 1 (𝐴 = 𝐵 𝑥𝐴 𝐶 = 𝑥𝐵 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  wcel 2176  {cab 2191  wral 2484   ciin 3928
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-iin 3930
This theorem is referenced by:  riin0  3999  iin0r  4213
  Copyright terms: Public domain W3C validator