ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iinss2 Unicode version

Theorem iinss2 3925
Description: An indexed intersection is included in any of its members. (Contributed by FL, 15-Oct-2012.)
Assertion
Ref Expression
iinss2  |-  ( x  e.  A  ->  |^|_ x  e.  A  B  C_  B
)

Proof of Theorem iinss2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 vex 2733 . . . . 5  |-  y  e. 
_V
2 eliin 3878 . . . . 5  |-  ( y  e.  _V  ->  (
y  e.  |^|_ x  e.  A  B  <->  A. x  e.  A  y  e.  B ) )
31, 2ax-mp 5 . . . 4  |-  ( y  e.  |^|_ x  e.  A  B 
<-> 
A. x  e.  A  y  e.  B )
4 rsp 2517 . . . 4  |-  ( A. x  e.  A  y  e.  B  ->  ( x  e.  A  ->  y  e.  B ) )
53, 4sylbi 120 . . 3  |-  ( y  e.  |^|_ x  e.  A  B  ->  ( x  e.  A  ->  y  e.  B ) )
65com12 30 . 2  |-  ( x  e.  A  ->  (
y  e.  |^|_ x  e.  A  B  ->  y  e.  B ) )
76ssrdv 3153 1  |-  ( x  e.  A  ->  |^|_ x  e.  A  B  C_  B
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    e. wcel 2141   A.wral 2448   _Vcvv 2730    C_ wss 3121   |^|_ciin 3874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-v 2732  df-in 3127  df-ss 3134  df-iin 3876
This theorem is referenced by:  dmiin  4857
  Copyright terms: Public domain W3C validator