ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iinss2 Unicode version

Theorem iinss2 3934
Description: An indexed intersection is included in any of its members. (Contributed by FL, 15-Oct-2012.)
Assertion
Ref Expression
iinss2  |-  ( x  e.  A  ->  |^|_ x  e.  A  B  C_  B
)

Proof of Theorem iinss2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 vex 2738 . . . . 5  |-  y  e. 
_V
2 eliin 3887 . . . . 5  |-  ( y  e.  _V  ->  (
y  e.  |^|_ x  e.  A  B  <->  A. x  e.  A  y  e.  B ) )
31, 2ax-mp 5 . . . 4  |-  ( y  e.  |^|_ x  e.  A  B 
<-> 
A. x  e.  A  y  e.  B )
4 rsp 2522 . . . 4  |-  ( A. x  e.  A  y  e.  B  ->  ( x  e.  A  ->  y  e.  B ) )
53, 4sylbi 121 . . 3  |-  ( y  e.  |^|_ x  e.  A  B  ->  ( x  e.  A  ->  y  e.  B ) )
65com12 30 . 2  |-  ( x  e.  A  ->  (
y  e.  |^|_ x  e.  A  B  ->  y  e.  B ) )
76ssrdv 3159 1  |-  ( x  e.  A  ->  |^|_ x  e.  A  B  C_  B
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    e. wcel 2146   A.wral 2453   _Vcvv 2735    C_ wss 3127   |^|_ciin 3883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-v 2737  df-in 3133  df-ss 3140  df-iin 3885
This theorem is referenced by:  dmiin  4866
  Copyright terms: Public domain W3C validator