Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > iinss2 | GIF version |
Description: An indexed intersection is included in any of its members. (Contributed by FL, 15-Oct-2012.) |
Ref | Expression |
---|---|
iinss2 | ⊢ (𝑥 ∈ 𝐴 → ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2715 | . . . . 5 ⊢ 𝑦 ∈ V | |
2 | eliin 3854 | . . . . 5 ⊢ (𝑦 ∈ V → (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵)) | |
3 | 1, 2 | ax-mp 5 | . . . 4 ⊢ (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) |
4 | rsp 2504 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 → (𝑥 ∈ 𝐴 → 𝑦 ∈ 𝐵)) | |
5 | 3, 4 | sylbi 120 | . . 3 ⊢ (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 → (𝑥 ∈ 𝐴 → 𝑦 ∈ 𝐵)) |
6 | 5 | com12 30 | . 2 ⊢ (𝑥 ∈ 𝐴 → (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 → 𝑦 ∈ 𝐵)) |
7 | 6 | ssrdv 3134 | 1 ⊢ (𝑥 ∈ 𝐴 → ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∈ wcel 2128 ∀wral 2435 Vcvv 2712 ⊆ wss 3102 ∩ ciin 3850 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-v 2714 df-in 3108 df-ss 3115 df-iin 3852 |
This theorem is referenced by: dmiin 4831 |
Copyright terms: Public domain | W3C validator |