ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iinss2 GIF version

Theorem iinss2 3979
Description: An indexed intersection is included in any of its members. (Contributed by FL, 15-Oct-2012.)
Assertion
Ref Expression
iinss2 (𝑥𝐴 𝑥𝐴 𝐵𝐵)

Proof of Theorem iinss2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 vex 2774 . . . . 5 𝑦 ∈ V
2 eliin 3931 . . . . 5 (𝑦 ∈ V → (𝑦 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴 𝑦𝐵))
31, 2ax-mp 5 . . . 4 (𝑦 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴 𝑦𝐵)
4 rsp 2552 . . . 4 (∀𝑥𝐴 𝑦𝐵 → (𝑥𝐴𝑦𝐵))
53, 4sylbi 121 . . 3 (𝑦 𝑥𝐴 𝐵 → (𝑥𝐴𝑦𝐵))
65com12 30 . 2 (𝑥𝐴 → (𝑦 𝑥𝐴 𝐵𝑦𝐵))
76ssrdv 3198 1 (𝑥𝐴 𝑥𝐴 𝐵𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wcel 2175  wral 2483  Vcvv 2771  wss 3165   ciin 3927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-v 2773  df-in 3171  df-ss 3178  df-iin 3929
This theorem is referenced by:  dmiin  4922
  Copyright terms: Public domain W3C validator