ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iinss2 GIF version

Theorem iinss2 4017
Description: An indexed intersection is included in any of its members. (Contributed by FL, 15-Oct-2012.)
Assertion
Ref Expression
iinss2 (𝑥𝐴 𝑥𝐴 𝐵𝐵)

Proof of Theorem iinss2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 vex 2802 . . . . 5 𝑦 ∈ V
2 eliin 3969 . . . . 5 (𝑦 ∈ V → (𝑦 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴 𝑦𝐵))
31, 2ax-mp 5 . . . 4 (𝑦 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴 𝑦𝐵)
4 rsp 2577 . . . 4 (∀𝑥𝐴 𝑦𝐵 → (𝑥𝐴𝑦𝐵))
53, 4sylbi 121 . . 3 (𝑦 𝑥𝐴 𝐵 → (𝑥𝐴𝑦𝐵))
65com12 30 . 2 (𝑥𝐴 → (𝑦 𝑥𝐴 𝐵𝑦𝐵))
76ssrdv 3230 1 (𝑥𝐴 𝑥𝐴 𝐵𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wcel 2200  wral 2508  Vcvv 2799  wss 3197   ciin 3965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-v 2801  df-in 3203  df-ss 3210  df-iin 3967
This theorem is referenced by:  dmiin  4969
  Copyright terms: Public domain W3C validator