ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmiin Unicode version

Theorem dmiin 4912
Description: Domain of an intersection. (Contributed by FL, 15-Oct-2012.)
Assertion
Ref Expression
dmiin  |-  dom  |^|_ x  e.  A  B  C_  |^|_ x  e.  A  dom  B

Proof of Theorem dmiin
StepHypRef Expression
1 nfii1 3947 . . . 4  |-  F/_ x |^|_ x  e.  A  B
21nfdm 4910 . . 3  |-  F/_ x dom  |^|_ x  e.  A  B
32ssiinf 3966 . 2  |-  ( dom  |^|_ x  e.  A  B  C_ 
|^|_ x  e.  A  dom  B  <->  A. x  e.  A  dom  |^|_ x  e.  A  B  C_  dom  B )
4 iinss2 3969 . . 3  |-  ( x  e.  A  ->  |^|_ x  e.  A  B  C_  B
)
5 dmss 4865 . . 3  |-  ( |^|_ x  e.  A  B  C_  B  ->  dom  |^|_ x  e.  A  B  C_  dom  B )
64, 5syl 14 . 2  |-  ( x  e.  A  ->  dom  |^|_
x  e.  A  B  C_ 
dom  B )
73, 6mprgbir 2555 1  |-  dom  |^|_ x  e.  A  B  C_  |^|_ x  e.  A  dom  B
Colors of variables: wff set class
Syntax hints:    e. wcel 2167    C_ wss 3157   |^|_ciin 3917   dom cdm 4663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-sn 3628  df-pr 3629  df-op 3631  df-iin 3919  df-br 4034  df-dm 4673
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator