ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmiin Unicode version

Theorem dmiin 4943
Description: Domain of an intersection. (Contributed by FL, 15-Oct-2012.)
Assertion
Ref Expression
dmiin  |-  dom  |^|_ x  e.  A  B  C_  |^|_ x  e.  A  dom  B

Proof of Theorem dmiin
StepHypRef Expression
1 nfii1 3972 . . . 4  |-  F/_ x |^|_ x  e.  A  B
21nfdm 4941 . . 3  |-  F/_ x dom  |^|_ x  e.  A  B
32ssiinf 3991 . 2  |-  ( dom  |^|_ x  e.  A  B  C_ 
|^|_ x  e.  A  dom  B  <->  A. x  e.  A  dom  |^|_ x  e.  A  B  C_  dom  B )
4 iinss2 3994 . . 3  |-  ( x  e.  A  ->  |^|_ x  e.  A  B  C_  B
)
5 dmss 4896 . . 3  |-  ( |^|_ x  e.  A  B  C_  B  ->  dom  |^|_ x  e.  A  B  C_  dom  B )
64, 5syl 14 . 2  |-  ( x  e.  A  ->  dom  |^|_
x  e.  A  B  C_ 
dom  B )
73, 6mprgbir 2566 1  |-  dom  |^|_ x  e.  A  B  C_  |^|_ x  e.  A  dom  B
Colors of variables: wff set class
Syntax hints:    e. wcel 2178    C_ wss 3174   |^|_ciin 3942   dom cdm 4693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-sn 3649  df-pr 3650  df-op 3652  df-iin 3944  df-br 4060  df-dm 4703
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator