ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmiin Unicode version

Theorem dmiin 4969
Description: Domain of an intersection. (Contributed by FL, 15-Oct-2012.)
Assertion
Ref Expression
dmiin  |-  dom  |^|_ x  e.  A  B  C_  |^|_ x  e.  A  dom  B

Proof of Theorem dmiin
StepHypRef Expression
1 nfii1 3995 . . . 4  |-  F/_ x |^|_ x  e.  A  B
21nfdm 4967 . . 3  |-  F/_ x dom  |^|_ x  e.  A  B
32ssiinf 4014 . 2  |-  ( dom  |^|_ x  e.  A  B  C_ 
|^|_ x  e.  A  dom  B  <->  A. x  e.  A  dom  |^|_ x  e.  A  B  C_  dom  B )
4 iinss2 4017 . . 3  |-  ( x  e.  A  ->  |^|_ x  e.  A  B  C_  B
)
5 dmss 4921 . . 3  |-  ( |^|_ x  e.  A  B  C_  B  ->  dom  |^|_ x  e.  A  B  C_  dom  B )
64, 5syl 14 . 2  |-  ( x  e.  A  ->  dom  |^|_
x  e.  A  B  C_ 
dom  B )
73, 6mprgbir 2588 1  |-  dom  |^|_ x  e.  A  B  C_  |^|_ x  e.  A  dom  B
Colors of variables: wff set class
Syntax hints:    e. wcel 2200    C_ wss 3197   |^|_ciin 3965   dom cdm 4718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-sn 3672  df-pr 3673  df-op 3675  df-iin 3967  df-br 4083  df-dm 4728
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator