ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  res0 Unicode version

Theorem res0 5009
Description: A restriction to the empty set is empty. (Contributed by NM, 12-Nov-1994.)
Assertion
Ref Expression
res0  |-  ( A  |`  (/) )  =  (/)

Proof of Theorem res0
StepHypRef Expression
1 df-res 4731 . 2  |-  ( A  |`  (/) )  =  ( A  i^i  ( (/)  X. 
_V ) )
2 0xp 4799 . . 3  |-  ( (/)  X. 
_V )  =  (/)
32ineq2i 3402 . 2  |-  ( A  i^i  ( (/)  X.  _V ) )  =  ( A  i^i  (/) )
4 in0 3526 . 2  |-  ( A  i^i  (/) )  =  (/)
51, 3, 43eqtri 2254 1  |-  ( A  |`  (/) )  =  (/)
Colors of variables: wff set class
Syntax hints:    = wceq 1395   _Vcvv 2799    i^i cin 3196   (/)c0 3491    X. cxp 4717    |` cres 4721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-opab 4146  df-xp 4725  df-res 4731
This theorem is referenced by:  ima0  5087  resdisj  5157  smo0  6444  tfr0dm  6468  tfr0  6469  fnfi  7103  setsslid  13083
  Copyright terms: Public domain W3C validator