ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  res0 Unicode version

Theorem res0 4982
Description: A restriction to the empty set is empty. (Contributed by NM, 12-Nov-1994.)
Assertion
Ref Expression
res0  |-  ( A  |`  (/) )  =  (/)

Proof of Theorem res0
StepHypRef Expression
1 df-res 4705 . 2  |-  ( A  |`  (/) )  =  ( A  i^i  ( (/)  X. 
_V ) )
2 0xp 4773 . . 3  |-  ( (/)  X. 
_V )  =  (/)
32ineq2i 3379 . 2  |-  ( A  i^i  ( (/)  X.  _V ) )  =  ( A  i^i  (/) )
4 in0 3503 . 2  |-  ( A  i^i  (/) )  =  (/)
51, 3, 43eqtri 2232 1  |-  ( A  |`  (/) )  =  (/)
Colors of variables: wff set class
Syntax hints:    = wceq 1373   _Vcvv 2776    i^i cin 3173   (/)c0 3468    X. cxp 4691    |` cres 4695
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-opab 4122  df-xp 4699  df-res 4705
This theorem is referenced by:  ima0  5060  resdisj  5130  smo0  6407  tfr0dm  6431  tfr0  6432  fnfi  7064  setsslid  12998
  Copyright terms: Public domain W3C validator