ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  res0 Unicode version

Theorem res0 4946
Description: A restriction to the empty set is empty. (Contributed by NM, 12-Nov-1994.)
Assertion
Ref Expression
res0  |-  ( A  |`  (/) )  =  (/)

Proof of Theorem res0
StepHypRef Expression
1 df-res 4671 . 2  |-  ( A  |`  (/) )  =  ( A  i^i  ( (/)  X. 
_V ) )
2 0xp 4739 . . 3  |-  ( (/)  X. 
_V )  =  (/)
32ineq2i 3357 . 2  |-  ( A  i^i  ( (/)  X.  _V ) )  =  ( A  i^i  (/) )
4 in0 3481 . 2  |-  ( A  i^i  (/) )  =  (/)
51, 3, 43eqtri 2218 1  |-  ( A  |`  (/) )  =  (/)
Colors of variables: wff set class
Syntax hints:    = wceq 1364   _Vcvv 2760    i^i cin 3152   (/)c0 3446    X. cxp 4657    |` cres 4661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-opab 4091  df-xp 4665  df-res 4671
This theorem is referenced by:  ima0  5024  resdisj  5094  smo0  6351  tfr0dm  6375  tfr0  6376  fnfi  6995  setsslid  12669
  Copyright terms: Public domain W3C validator