ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  res0 Unicode version

Theorem res0 4963
Description: A restriction to the empty set is empty. (Contributed by NM, 12-Nov-1994.)
Assertion
Ref Expression
res0  |-  ( A  |`  (/) )  =  (/)

Proof of Theorem res0
StepHypRef Expression
1 df-res 4687 . 2  |-  ( A  |`  (/) )  =  ( A  i^i  ( (/)  X. 
_V ) )
2 0xp 4755 . . 3  |-  ( (/)  X. 
_V )  =  (/)
32ineq2i 3371 . 2  |-  ( A  i^i  ( (/)  X.  _V ) )  =  ( A  i^i  (/) )
4 in0 3495 . 2  |-  ( A  i^i  (/) )  =  (/)
51, 3, 43eqtri 2230 1  |-  ( A  |`  (/) )  =  (/)
Colors of variables: wff set class
Syntax hints:    = wceq 1373   _Vcvv 2772    i^i cin 3165   (/)c0 3460    X. cxp 4673    |` cres 4677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-opab 4106  df-xp 4681  df-res 4687
This theorem is referenced by:  ima0  5041  resdisj  5111  smo0  6384  tfr0dm  6408  tfr0  6409  fnfi  7038  setsslid  12883
  Copyright terms: Public domain W3C validator