ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  res0 Unicode version

Theorem res0 4913
Description: A restriction to the empty set is empty. (Contributed by NM, 12-Nov-1994.)
Assertion
Ref Expression
res0  |-  ( A  |`  (/) )  =  (/)

Proof of Theorem res0
StepHypRef Expression
1 df-res 4640 . 2  |-  ( A  |`  (/) )  =  ( A  i^i  ( (/)  X. 
_V ) )
2 0xp 4708 . . 3  |-  ( (/)  X. 
_V )  =  (/)
32ineq2i 3335 . 2  |-  ( A  i^i  ( (/)  X.  _V ) )  =  ( A  i^i  (/) )
4 in0 3459 . 2  |-  ( A  i^i  (/) )  =  (/)
51, 3, 43eqtri 2202 1  |-  ( A  |`  (/) )  =  (/)
Colors of variables: wff set class
Syntax hints:    = wceq 1353   _Vcvv 2739    i^i cin 3130   (/)c0 3424    X. cxp 4626    |` cres 4630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-opab 4067  df-xp 4634  df-res 4640
This theorem is referenced by:  ima0  4989  resdisj  5059  smo0  6301  tfr0dm  6325  tfr0  6326  fnfi  6938  setsslid  12515
  Copyright terms: Public domain W3C validator