Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > in0 | GIF version |
Description: The intersection of a class with the empty set is the empty set. Theorem 16 of [Suppes] p. 26. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
in0 | ⊢ (𝐴 ∩ ∅) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 3418 | . . . 4 ⊢ ¬ 𝑥 ∈ ∅ | |
2 | 1 | bianfi 942 | . . 3 ⊢ (𝑥 ∈ ∅ ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ ∅)) |
3 | 2 | bicomi 131 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ ∅) ↔ 𝑥 ∈ ∅) |
4 | 3 | ineqri 3320 | 1 ⊢ (𝐴 ∩ ∅) = ∅ |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 = wceq 1348 ∈ wcel 2141 ∩ cin 3120 ∅c0 3414 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-dif 3123 df-in 3127 df-nul 3415 |
This theorem is referenced by: 0in 3450 res0 4895 dju0en 7191 rest0 12973 |
Copyright terms: Public domain | W3C validator |