| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > in0 | GIF version | ||
| Description: The intersection of a class with the empty set is the empty set. Theorem 16 of [Suppes] p. 26. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| in0 | ⊢ (𝐴 ∩ ∅) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 3468 | . . . 4 ⊢ ¬ 𝑥 ∈ ∅ | |
| 2 | 1 | bianfi 950 | . . 3 ⊢ (𝑥 ∈ ∅ ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ ∅)) |
| 3 | 2 | bicomi 132 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ ∅) ↔ 𝑥 ∈ ∅) |
| 4 | 3 | ineqri 3370 | 1 ⊢ (𝐴 ∩ ∅) = ∅ |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1373 ∈ wcel 2177 ∩ cin 3169 ∅c0 3464 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-dif 3172 df-in 3176 df-nul 3465 |
| This theorem is referenced by: 0in 3500 res0 4972 dju0en 7342 bitsinv1 12348 rest0 14726 |
| Copyright terms: Public domain | W3C validator |