![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > in0 | GIF version |
Description: The intersection of a class with the empty set is the empty set. Theorem 16 of [Suppes] p. 26. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
in0 | ⊢ (𝐴 ∩ ∅) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 3290 | . . . 4 ⊢ ¬ 𝑥 ∈ ∅ | |
2 | 1 | bianfi 893 | . . 3 ⊢ (𝑥 ∈ ∅ ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ ∅)) |
3 | 2 | bicomi 130 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ ∅) ↔ 𝑥 ∈ ∅) |
4 | 3 | ineqri 3193 | 1 ⊢ (𝐴 ∩ ∅) = ∅ |
Colors of variables: wff set class |
Syntax hints: ∧ wa 102 = wceq 1289 ∈ wcel 1438 ∩ cin 2998 ∅c0 3286 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 579 ax-in2 580 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 |
This theorem depends on definitions: df-bi 115 df-tru 1292 df-nf 1395 df-sb 1693 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-v 2621 df-dif 3001 df-in 3005 df-nul 3287 |
This theorem is referenced by: 0in 3318 res0 4717 |
Copyright terms: Public domain | W3C validator |