ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infex2g Unicode version

Theorem infex2g 7023
Description: Existence of infimum. (Contributed by Jim Kingdon, 1-Oct-2024.)
Assertion
Ref Expression
infex2g  |-  ( A  e.  C  -> inf ( B ,  A ,  R
)  e.  _V )

Proof of Theorem infex2g
StepHypRef Expression
1 df-inf 6974 . 2  |- inf ( B ,  A ,  R
)  =  sup ( B ,  A ,  `' R )
2 supex2g 7022 . 2  |-  ( A  e.  C  ->  sup ( B ,  A ,  `' R )  e.  _V )
31, 2eqeltrid 2262 1  |-  ( A  e.  C  -> inf ( B ,  A ,  R
)  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2146   _Vcvv 2735   `'ccnv 4619   supcsup 6971  infcinf 6972
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-un 4427
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-rex 2459  df-rab 2462  df-v 2737  df-in 3133  df-ss 3140  df-uni 3806  df-sup 6973  df-inf 6974
This theorem is referenced by:  odzval  12206
  Copyright terms: Public domain W3C validator