ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infex2g Unicode version

Theorem infex2g 7136
Description: Existence of infimum. (Contributed by Jim Kingdon, 1-Oct-2024.)
Assertion
Ref Expression
infex2g  |-  ( A  e.  C  -> inf ( B ,  A ,  R
)  e.  _V )

Proof of Theorem infex2g
StepHypRef Expression
1 df-inf 7087 . 2  |- inf ( B ,  A ,  R
)  =  sup ( B ,  A ,  `' R )
2 supex2g 7135 . 2  |-  ( A  e.  C  ->  sup ( B ,  A ,  `' R )  e.  _V )
31, 2eqeltrid 2292 1  |-  ( A  e.  C  -> inf ( B ,  A ,  R
)  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2176   _Vcvv 2772   `'ccnv 4674   supcsup 7084  infcinf 7085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-un 4480
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-rex 2490  df-rab 2493  df-v 2774  df-in 3172  df-ss 3179  df-uni 3851  df-sup 7086  df-inf 7087
This theorem is referenced by:  odzval  12564
  Copyright terms: Public domain W3C validator