ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infex2g Unicode version

Theorem infex2g 7011
Description: Existence of infimum. (Contributed by Jim Kingdon, 1-Oct-2024.)
Assertion
Ref Expression
infex2g  |-  ( A  e.  C  -> inf ( B ,  A ,  R
)  e.  _V )

Proof of Theorem infex2g
StepHypRef Expression
1 df-inf 6962 . 2  |- inf ( B ,  A ,  R
)  =  sup ( B ,  A ,  `' R )
2 supex2g 7010 . 2  |-  ( A  e.  C  ->  sup ( B ,  A ,  `' R )  e.  _V )
31, 2eqeltrid 2257 1  |-  ( A  e.  C  -> inf ( B ,  A ,  R
)  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2141   _Vcvv 2730   `'ccnv 4610   supcsup 6959  infcinf 6960
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-rex 2454  df-rab 2457  df-v 2732  df-in 3127  df-ss 3134  df-uni 3797  df-sup 6961  df-inf 6962
This theorem is referenced by:  odzval  12195
  Copyright terms: Public domain W3C validator