ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infex2g Unicode version

Theorem infex2g 7035
Description: Existence of infimum. (Contributed by Jim Kingdon, 1-Oct-2024.)
Assertion
Ref Expression
infex2g  |-  ( A  e.  C  -> inf ( B ,  A ,  R
)  e.  _V )

Proof of Theorem infex2g
StepHypRef Expression
1 df-inf 6986 . 2  |- inf ( B ,  A ,  R
)  =  sup ( B ,  A ,  `' R )
2 supex2g 7034 . 2  |-  ( A  e.  C  ->  sup ( B ,  A ,  `' R )  e.  _V )
31, 2eqeltrid 2264 1  |-  ( A  e.  C  -> inf ( B ,  A ,  R
)  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2148   _Vcvv 2739   `'ccnv 4627   supcsup 6983  infcinf 6984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-un 4435
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-rex 2461  df-rab 2464  df-v 2741  df-in 3137  df-ss 3144  df-uni 3812  df-sup 6985  df-inf 6986
This theorem is referenced by:  odzval  12243
  Copyright terms: Public domain W3C validator