Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > infex2g | Unicode version |
Description: Existence of infimum. (Contributed by Jim Kingdon, 1-Oct-2024.) |
Ref | Expression |
---|---|
infex2g | inf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-inf 6974 | . 2 inf | |
2 | supex2g 7022 | . 2 | |
3 | 1, 2 | eqeltrid 2262 | 1 inf |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2146 cvv 2735 ccnv 4619 csup 6971 infcinf 6972 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-un 4427 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-rex 2459 df-rab 2462 df-v 2737 df-in 3133 df-ss 3140 df-uni 3806 df-sup 6973 df-inf 6974 |
This theorem is referenced by: odzval 12206 |
Copyright terms: Public domain | W3C validator |