ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  odzval Unicode version

Theorem odzval 12410
Description: Value of the order function. This is a function of functions; the inner argument selects the base (i.e., mod  N for some  N, often prime) and the outer argument selects the integer or equivalence class (if you want to think about it that way) from the integers mod  N. In order to ensure the supremum is well-defined, we only define the expression when  A and  N are coprime. (Contributed by Mario Carneiro, 23-Feb-2014.) (Revised by AV, 26-Sep-2020.)
Assertion
Ref Expression
odzval  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  (
( odZ `  N ) `  A
)  = inf ( { n  e.  NN  |  N  ||  ( ( A ^ n )  - 
1 ) } ,  RR ,  <  ) )
Distinct variable groups:    n, N    A, n

Proof of Theorem odzval
Dummy variables  m  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5930 . . . . . . . . 9  |-  ( m  =  N  ->  (
x  gcd  m )  =  ( x  gcd  N ) )
21eqeq1d 2205 . . . . . . . 8  |-  ( m  =  N  ->  (
( x  gcd  m
)  =  1  <->  (
x  gcd  N )  =  1 ) )
32rabbidv 2752 . . . . . . 7  |-  ( m  =  N  ->  { x  e.  ZZ  |  ( x  gcd  m )  =  1 }  =  {
x  e.  ZZ  | 
( x  gcd  N
)  =  1 } )
4 oveq1 5929 . . . . . . . . 9  |-  ( n  =  x  ->  (
n  gcd  N )  =  ( x  gcd  N ) )
54eqeq1d 2205 . . . . . . . 8  |-  ( n  =  x  ->  (
( n  gcd  N
)  =  1  <->  (
x  gcd  N )  =  1 ) )
65cbvrabv 2762 . . . . . . 7  |-  { n  e.  ZZ  |  ( n  gcd  N )  =  1 }  =  {
x  e.  ZZ  | 
( x  gcd  N
)  =  1 }
73, 6eqtr4di 2247 . . . . . 6  |-  ( m  =  N  ->  { x  e.  ZZ  |  ( x  gcd  m )  =  1 }  =  {
n  e.  ZZ  | 
( n  gcd  N
)  =  1 } )
8 breq1 4036 . . . . . . . 8  |-  ( m  =  N  ->  (
m  ||  ( (
x ^ n )  -  1 )  <->  N  ||  (
( x ^ n
)  -  1 ) ) )
98rabbidv 2752 . . . . . . 7  |-  ( m  =  N  ->  { n  e.  NN  |  m  ||  ( ( x ^
n )  -  1 ) }  =  {
n  e.  NN  |  N  ||  ( ( x ^ n )  - 
1 ) } )
109infeq1d 7078 . . . . . 6  |-  ( m  =  N  -> inf ( { n  e.  NN  |  m  ||  ( ( x ^ n )  - 
1 ) } ,  RR ,  <  )  = inf ( { n  e.  NN  |  N  ||  ( ( x ^
n )  -  1 ) } ,  RR ,  <  ) )
117, 10mpteq12dv 4115 . . . . 5  |-  ( m  =  N  ->  (
x  e.  { x  e.  ZZ  |  ( x  gcd  m )  =  1 }  |-> inf ( { n  e.  NN  |  m  ||  ( ( x ^ n )  - 
1 ) } ,  RR ,  <  ) )  =  ( x  e. 
{ n  e.  ZZ  |  ( n  gcd  N )  =  1 } 
|-> inf ( { n  e.  NN  |  N  ||  ( ( x ^
n )  -  1 ) } ,  RR ,  <  ) ) )
12 df-odz 12378 . . . . 5  |-  odZ 
=  ( m  e.  NN  |->  ( x  e. 
{ x  e.  ZZ  |  ( x  gcd  m )  =  1 }  |-> inf ( { n  e.  NN  |  m  ||  ( ( x ^
n )  -  1 ) } ,  RR ,  <  ) ) )
13 zex 9335 . . . . . 6  |-  ZZ  e.  _V
1413mptrabex 5790 . . . . 5  |-  ( x  e.  { n  e.  ZZ  |  ( n  gcd  N )  =  1 }  |-> inf ( { n  e.  NN  |  N  ||  ( ( x ^ n )  - 
1 ) } ,  RR ,  <  ) )  e.  _V
1511, 12, 14fvmpt 5638 . . . 4  |-  ( N  e.  NN  ->  ( odZ `  N )  =  ( x  e. 
{ n  e.  ZZ  |  ( n  gcd  N )  =  1 } 
|-> inf ( { n  e.  NN  |  N  ||  ( ( x ^
n )  -  1 ) } ,  RR ,  <  ) ) )
1615fveq1d 5560 . . 3  |-  ( N  e.  NN  ->  (
( odZ `  N ) `  A
)  =  ( ( x  e.  { n  e.  ZZ  |  ( n  gcd  N )  =  1 }  |-> inf ( { n  e.  NN  |  N  ||  ( ( x ^ n )  - 
1 ) } ,  RR ,  <  ) ) `
 A ) )
17 oveq1 5929 . . . . . 6  |-  ( n  =  A  ->  (
n  gcd  N )  =  ( A  gcd  N ) )
1817eqeq1d 2205 . . . . 5  |-  ( n  =  A  ->  (
( n  gcd  N
)  =  1  <->  ( A  gcd  N )  =  1 ) )
1918elrab 2920 . . . 4  |-  ( A  e.  { n  e.  ZZ  |  ( n  gcd  N )  =  1 }  <->  ( A  e.  ZZ  /\  ( A  gcd  N )  =  1 ) )
20 oveq1 5929 . . . . . . . . 9  |-  ( x  =  A  ->  (
x ^ n )  =  ( A ^
n ) )
2120oveq1d 5937 . . . . . . . 8  |-  ( x  =  A  ->  (
( x ^ n
)  -  1 )  =  ( ( A ^ n )  - 
1 ) )
2221breq2d 4045 . . . . . . 7  |-  ( x  =  A  ->  ( N  ||  ( ( x ^ n )  - 
1 )  <->  N  ||  (
( A ^ n
)  -  1 ) ) )
2322rabbidv 2752 . . . . . 6  |-  ( x  =  A  ->  { n  e.  NN  |  N  ||  ( ( x ^
n )  -  1 ) }  =  {
n  e.  NN  |  N  ||  ( ( A ^ n )  - 
1 ) } )
2423infeq1d 7078 . . . . 5  |-  ( x  =  A  -> inf ( { n  e.  NN  |  N  ||  ( ( x ^ n )  - 
1 ) } ,  RR ,  <  )  = inf ( { n  e.  NN  |  N  ||  ( ( A ^
n )  -  1 ) } ,  RR ,  <  ) )
25 eqid 2196 . . . . 5  |-  ( x  e.  { n  e.  ZZ  |  ( n  gcd  N )  =  1 }  |-> inf ( { n  e.  NN  |  N  ||  ( ( x ^ n )  - 
1 ) } ,  RR ,  <  ) )  =  ( x  e. 
{ n  e.  ZZ  |  ( n  gcd  N )  =  1 } 
|-> inf ( { n  e.  NN  |  N  ||  ( ( x ^
n )  -  1 ) } ,  RR ,  <  ) )
26 reex 8013 . . . . . 6  |-  RR  e.  _V
27 infex2g 7100 . . . . . 6  |-  ( RR  e.  _V  -> inf ( { n  e.  NN  |  N  ||  ( ( A ^ n )  - 
1 ) } ,  RR ,  <  )  e. 
_V )
2826, 27ax-mp 5 . . . . 5  |- inf ( { n  e.  NN  |  N  ||  ( ( A ^ n )  - 
1 ) } ,  RR ,  <  )  e. 
_V
2924, 25, 28fvmpt 5638 . . . 4  |-  ( A  e.  { n  e.  ZZ  |  ( n  gcd  N )  =  1 }  ->  (
( x  e.  {
n  e.  ZZ  | 
( n  gcd  N
)  =  1 } 
|-> inf ( { n  e.  NN  |  N  ||  ( ( x ^
n )  -  1 ) } ,  RR ,  <  ) ) `  A )  = inf ( { n  e.  NN  |  N  ||  ( ( A ^ n )  -  1 ) } ,  RR ,  <  ) )
3019, 29sylbir 135 . . 3  |-  ( ( A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  -> 
( ( x  e. 
{ n  e.  ZZ  |  ( n  gcd  N )  =  1 } 
|-> inf ( { n  e.  NN  |  N  ||  ( ( x ^
n )  -  1 ) } ,  RR ,  <  ) ) `  A )  = inf ( { n  e.  NN  |  N  ||  ( ( A ^ n )  -  1 ) } ,  RR ,  <  ) )
3116, 30sylan9eq 2249 . 2  |-  ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  ( A  gcd  N
)  =  1 ) )  ->  ( ( odZ `  N ) `
 A )  = inf ( { n  e.  NN  |  N  ||  ( ( A ^
n )  -  1 ) } ,  RR ,  <  ) )
32313impb 1201 1  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  (
( odZ `  N ) `  A
)  = inf ( { n  e.  NN  |  N  ||  ( ( A ^ n )  - 
1 ) } ,  RR ,  <  ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2167   {crab 2479   _Vcvv 2763   class class class wbr 4033    |-> cmpt 4094   ` cfv 5258  (class class class)co 5922  infcinf 7049   RRcr 7878   1c1 7880    < clt 8061    - cmin 8197   NNcn 8990   ZZcz 9326   ^cexp 10630    || cdvds 11952    gcd cgcd 12120   odZcodz 12376
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-cnex 7970  ax-resscn 7971
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-sup 7050  df-inf 7051  df-neg 8200  df-z 9327  df-odz 12378
This theorem is referenced by:  odzcllem  12411  odzdvds  12414
  Copyright terms: Public domain W3C validator