ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  odzval Unicode version

Theorem odzval 12764
Description: Value of the order function. This is a function of functions; the inner argument selects the base (i.e., mod  N for some  N, often prime) and the outer argument selects the integer or equivalence class (if you want to think about it that way) from the integers mod  N. In order to ensure the supremum is well-defined, we only define the expression when  A and  N are coprime. (Contributed by Mario Carneiro, 23-Feb-2014.) (Revised by AV, 26-Sep-2020.)
Assertion
Ref Expression
odzval  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  (
( odZ `  N ) `  A
)  = inf ( { n  e.  NN  |  N  ||  ( ( A ^ n )  - 
1 ) } ,  RR ,  <  ) )
Distinct variable groups:    n, N    A, n

Proof of Theorem odzval
Dummy variables  m  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6009 . . . . . . . . 9  |-  ( m  =  N  ->  (
x  gcd  m )  =  ( x  gcd  N ) )
21eqeq1d 2238 . . . . . . . 8  |-  ( m  =  N  ->  (
( x  gcd  m
)  =  1  <->  (
x  gcd  N )  =  1 ) )
32rabbidv 2788 . . . . . . 7  |-  ( m  =  N  ->  { x  e.  ZZ  |  ( x  gcd  m )  =  1 }  =  {
x  e.  ZZ  | 
( x  gcd  N
)  =  1 } )
4 oveq1 6008 . . . . . . . . 9  |-  ( n  =  x  ->  (
n  gcd  N )  =  ( x  gcd  N ) )
54eqeq1d 2238 . . . . . . . 8  |-  ( n  =  x  ->  (
( n  gcd  N
)  =  1  <->  (
x  gcd  N )  =  1 ) )
65cbvrabv 2798 . . . . . . 7  |-  { n  e.  ZZ  |  ( n  gcd  N )  =  1 }  =  {
x  e.  ZZ  | 
( x  gcd  N
)  =  1 }
73, 6eqtr4di 2280 . . . . . 6  |-  ( m  =  N  ->  { x  e.  ZZ  |  ( x  gcd  m )  =  1 }  =  {
n  e.  ZZ  | 
( n  gcd  N
)  =  1 } )
8 breq1 4086 . . . . . . . 8  |-  ( m  =  N  ->  (
m  ||  ( (
x ^ n )  -  1 )  <->  N  ||  (
( x ^ n
)  -  1 ) ) )
98rabbidv 2788 . . . . . . 7  |-  ( m  =  N  ->  { n  e.  NN  |  m  ||  ( ( x ^
n )  -  1 ) }  =  {
n  e.  NN  |  N  ||  ( ( x ^ n )  - 
1 ) } )
109infeq1d 7179 . . . . . 6  |-  ( m  =  N  -> inf ( { n  e.  NN  |  m  ||  ( ( x ^ n )  - 
1 ) } ,  RR ,  <  )  = inf ( { n  e.  NN  |  N  ||  ( ( x ^
n )  -  1 ) } ,  RR ,  <  ) )
117, 10mpteq12dv 4166 . . . . 5  |-  ( m  =  N  ->  (
x  e.  { x  e.  ZZ  |  ( x  gcd  m )  =  1 }  |-> inf ( { n  e.  NN  |  m  ||  ( ( x ^ n )  - 
1 ) } ,  RR ,  <  ) )  =  ( x  e. 
{ n  e.  ZZ  |  ( n  gcd  N )  =  1 } 
|-> inf ( { n  e.  NN  |  N  ||  ( ( x ^
n )  -  1 ) } ,  RR ,  <  ) ) )
12 df-odz 12732 . . . . 5  |-  odZ 
=  ( m  e.  NN  |->  ( x  e. 
{ x  e.  ZZ  |  ( x  gcd  m )  =  1 }  |-> inf ( { n  e.  NN  |  m  ||  ( ( x ^
n )  -  1 ) } ,  RR ,  <  ) ) )
13 zex 9455 . . . . . 6  |-  ZZ  e.  _V
1413mptrabex 5867 . . . . 5  |-  ( x  e.  { n  e.  ZZ  |  ( n  gcd  N )  =  1 }  |-> inf ( { n  e.  NN  |  N  ||  ( ( x ^ n )  - 
1 ) } ,  RR ,  <  ) )  e.  _V
1511, 12, 14fvmpt 5711 . . . 4  |-  ( N  e.  NN  ->  ( odZ `  N )  =  ( x  e. 
{ n  e.  ZZ  |  ( n  gcd  N )  =  1 } 
|-> inf ( { n  e.  NN  |  N  ||  ( ( x ^
n )  -  1 ) } ,  RR ,  <  ) ) )
1615fveq1d 5629 . . 3  |-  ( N  e.  NN  ->  (
( odZ `  N ) `  A
)  =  ( ( x  e.  { n  e.  ZZ  |  ( n  gcd  N )  =  1 }  |-> inf ( { n  e.  NN  |  N  ||  ( ( x ^ n )  - 
1 ) } ,  RR ,  <  ) ) `
 A ) )
17 oveq1 6008 . . . . . 6  |-  ( n  =  A  ->  (
n  gcd  N )  =  ( A  gcd  N ) )
1817eqeq1d 2238 . . . . 5  |-  ( n  =  A  ->  (
( n  gcd  N
)  =  1  <->  ( A  gcd  N )  =  1 ) )
1918elrab 2959 . . . 4  |-  ( A  e.  { n  e.  ZZ  |  ( n  gcd  N )  =  1 }  <->  ( A  e.  ZZ  /\  ( A  gcd  N )  =  1 ) )
20 oveq1 6008 . . . . . . . . 9  |-  ( x  =  A  ->  (
x ^ n )  =  ( A ^
n ) )
2120oveq1d 6016 . . . . . . . 8  |-  ( x  =  A  ->  (
( x ^ n
)  -  1 )  =  ( ( A ^ n )  - 
1 ) )
2221breq2d 4095 . . . . . . 7  |-  ( x  =  A  ->  ( N  ||  ( ( x ^ n )  - 
1 )  <->  N  ||  (
( A ^ n
)  -  1 ) ) )
2322rabbidv 2788 . . . . . 6  |-  ( x  =  A  ->  { n  e.  NN  |  N  ||  ( ( x ^
n )  -  1 ) }  =  {
n  e.  NN  |  N  ||  ( ( A ^ n )  - 
1 ) } )
2423infeq1d 7179 . . . . 5  |-  ( x  =  A  -> inf ( { n  e.  NN  |  N  ||  ( ( x ^ n )  - 
1 ) } ,  RR ,  <  )  = inf ( { n  e.  NN  |  N  ||  ( ( A ^
n )  -  1 ) } ,  RR ,  <  ) )
25 eqid 2229 . . . . 5  |-  ( x  e.  { n  e.  ZZ  |  ( n  gcd  N )  =  1 }  |-> inf ( { n  e.  NN  |  N  ||  ( ( x ^ n )  - 
1 ) } ,  RR ,  <  ) )  =  ( x  e. 
{ n  e.  ZZ  |  ( n  gcd  N )  =  1 } 
|-> inf ( { n  e.  NN  |  N  ||  ( ( x ^
n )  -  1 ) } ,  RR ,  <  ) )
26 reex 8133 . . . . . 6  |-  RR  e.  _V
27 infex2g 7201 . . . . . 6  |-  ( RR  e.  _V  -> inf ( { n  e.  NN  |  N  ||  ( ( A ^ n )  - 
1 ) } ,  RR ,  <  )  e. 
_V )
2826, 27ax-mp 5 . . . . 5  |- inf ( { n  e.  NN  |  N  ||  ( ( A ^ n )  - 
1 ) } ,  RR ,  <  )  e. 
_V
2924, 25, 28fvmpt 5711 . . . 4  |-  ( A  e.  { n  e.  ZZ  |  ( n  gcd  N )  =  1 }  ->  (
( x  e.  {
n  e.  ZZ  | 
( n  gcd  N
)  =  1 } 
|-> inf ( { n  e.  NN  |  N  ||  ( ( x ^
n )  -  1 ) } ,  RR ,  <  ) ) `  A )  = inf ( { n  e.  NN  |  N  ||  ( ( A ^ n )  -  1 ) } ,  RR ,  <  ) )
3019, 29sylbir 135 . . 3  |-  ( ( A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  -> 
( ( x  e. 
{ n  e.  ZZ  |  ( n  gcd  N )  =  1 } 
|-> inf ( { n  e.  NN  |  N  ||  ( ( x ^
n )  -  1 ) } ,  RR ,  <  ) ) `  A )  = inf ( { n  e.  NN  |  N  ||  ( ( A ^ n )  -  1 ) } ,  RR ,  <  ) )
3116, 30sylan9eq 2282 . 2  |-  ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  ( A  gcd  N
)  =  1 ) )  ->  ( ( odZ `  N ) `
 A )  = inf ( { n  e.  NN  |  N  ||  ( ( A ^
n )  -  1 ) } ,  RR ,  <  ) )
32313impb 1223 1  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  (
( odZ `  N ) `  A
)  = inf ( { n  e.  NN  |  N  ||  ( ( A ^ n )  - 
1 ) } ,  RR ,  <  ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 1002    = wceq 1395    e. wcel 2200   {crab 2512   _Vcvv 2799   class class class wbr 4083    |-> cmpt 4145   ` cfv 5318  (class class class)co 6001  infcinf 7150   RRcr 7998   1c1 8000    < clt 8181    - cmin 8317   NNcn 9110   ZZcz 9446   ^cexp 10760    || cdvds 12298    gcd cgcd 12474   odZcodz 12730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-cnex 8090  ax-resscn 8091
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6004  df-sup 7151  df-inf 7152  df-neg 8320  df-z 9447  df-odz 12732
This theorem is referenced by:  odzcllem  12765  odzdvds  12768
  Copyright terms: Public domain W3C validator