Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > odzval | Unicode version |
Description: Value of the order function. This is a function of functions; the inner argument selects the base (i.e., mod for some , often prime) and the outer argument selects the integer or equivalence class (if you want to think about it that way) from the integers mod . In order to ensure the supremum is well-defined, we only define the expression when and are coprime. (Contributed by Mario Carneiro, 23-Feb-2014.) (Revised by AV, 26-Sep-2020.) |
Ref | Expression |
---|---|
odzval | inf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 5849 | . . . . . . . . 9 | |
2 | 1 | eqeq1d 2174 | . . . . . . . 8 |
3 | 2 | rabbidv 2714 | . . . . . . 7 |
4 | oveq1 5848 | . . . . . . . . 9 | |
5 | 4 | eqeq1d 2174 | . . . . . . . 8 |
6 | 5 | cbvrabv 2724 | . . . . . . 7 |
7 | 3, 6 | eqtr4di 2216 | . . . . . 6 |
8 | breq1 3984 | . . . . . . . 8 | |
9 | 8 | rabbidv 2714 | . . . . . . 7 |
10 | 9 | infeq1d 6973 | . . . . . 6 inf inf |
11 | 7, 10 | mpteq12dv 4063 | . . . . 5 inf inf |
12 | df-odz 12138 | . . . . 5 inf | |
13 | zex 9196 | . . . . . 6 | |
14 | 13 | mptrabex 5712 | . . . . 5 inf |
15 | 11, 12, 14 | fvmpt 5562 | . . . 4 inf |
16 | 15 | fveq1d 5487 | . . 3 inf |
17 | oveq1 5848 | . . . . . 6 | |
18 | 17 | eqeq1d 2174 | . . . . 5 |
19 | 18 | elrab 2881 | . . . 4 |
20 | oveq1 5848 | . . . . . . . . 9 | |
21 | 20 | oveq1d 5856 | . . . . . . . 8 |
22 | 21 | breq2d 3993 | . . . . . . 7 |
23 | 22 | rabbidv 2714 | . . . . . 6 |
24 | 23 | infeq1d 6973 | . . . . 5 inf inf |
25 | eqid 2165 | . . . . 5 inf inf | |
26 | reex 7883 | . . . . . 6 | |
27 | infex2g 6995 | . . . . . 6 inf | |
28 | 26, 27 | ax-mp 5 | . . . . 5 inf |
29 | 24, 25, 28 | fvmpt 5562 | . . . 4 inf inf |
30 | 19, 29 | sylbir 134 | . . 3 inf inf |
31 | 16, 30 | sylan9eq 2218 | . 2 inf |
32 | 31 | 3impb 1189 | 1 inf |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 968 wceq 1343 wcel 2136 crab 2447 cvv 2725 class class class wbr 3981 cmpt 4042 cfv 5187 (class class class)co 5841 infcinf 6944 cr 7748 c1 7750 clt 7929 cmin 8065 cn 8853 cz 9187 cexp 10450 cdvds 11723 cgcd 11871 codz 12136 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4096 ax-sep 4099 ax-pow 4152 ax-pr 4186 ax-un 4410 ax-cnex 7840 ax-resscn 7841 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ral 2448 df-rex 2449 df-reu 2450 df-rab 2452 df-v 2727 df-sbc 2951 df-csb 3045 df-un 3119 df-in 3121 df-ss 3128 df-pw 3560 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-iun 3867 df-br 3982 df-opab 4043 df-mpt 4044 df-id 4270 df-xp 4609 df-rel 4610 df-cnv 4611 df-co 4612 df-dm 4613 df-rn 4614 df-res 4615 df-ima 4616 df-iota 5152 df-fun 5189 df-fn 5190 df-f 5191 df-f1 5192 df-fo 5193 df-f1o 5194 df-fv 5195 df-ov 5844 df-sup 6945 df-inf 6946 df-neg 8068 df-z 9188 df-odz 12138 |
This theorem is referenced by: odzcllem 12170 odzdvds 12173 |
Copyright terms: Public domain | W3C validator |