| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > odzval | Unicode version | ||
| Description: Value of the order
function.  This is a function of functions; the inner
       argument selects the base (i.e., mod  | 
| Ref | Expression | 
|---|---|
| odzval | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | oveq2 5930 | 
. . . . . . . . 9
 | |
| 2 | 1 | eqeq1d 2205 | 
. . . . . . . 8
 | 
| 3 | 2 | rabbidv 2752 | 
. . . . . . 7
 | 
| 4 | oveq1 5929 | 
. . . . . . . . 9
 | |
| 5 | 4 | eqeq1d 2205 | 
. . . . . . . 8
 | 
| 6 | 5 | cbvrabv 2762 | 
. . . . . . 7
 | 
| 7 | 3, 6 | eqtr4di 2247 | 
. . . . . 6
 | 
| 8 | breq1 4036 | 
. . . . . . . 8
 | |
| 9 | 8 | rabbidv 2752 | 
. . . . . . 7
 | 
| 10 | 9 | infeq1d 7078 | 
. . . . . 6
 | 
| 11 | 7, 10 | mpteq12dv 4115 | 
. . . . 5
 | 
| 12 | df-odz 12378 | 
. . . . 5
 | |
| 13 | zex 9335 | 
. . . . . 6
 | |
| 14 | 13 | mptrabex 5790 | 
. . . . 5
 | 
| 15 | 11, 12, 14 | fvmpt 5638 | 
. . . 4
 | 
| 16 | 15 | fveq1d 5560 | 
. . 3
 | 
| 17 | oveq1 5929 | 
. . . . . 6
 | |
| 18 | 17 | eqeq1d 2205 | 
. . . . 5
 | 
| 19 | 18 | elrab 2920 | 
. . . 4
 | 
| 20 | oveq1 5929 | 
. . . . . . . . 9
 | |
| 21 | 20 | oveq1d 5937 | 
. . . . . . . 8
 | 
| 22 | 21 | breq2d 4045 | 
. . . . . . 7
 | 
| 23 | 22 | rabbidv 2752 | 
. . . . . 6
 | 
| 24 | 23 | infeq1d 7078 | 
. . . . 5
 | 
| 25 | eqid 2196 | 
. . . . 5
 | |
| 26 | reex 8013 | 
. . . . . 6
 | |
| 27 | infex2g 7100 | 
. . . . . 6
 | |
| 28 | 26, 27 | ax-mp 5 | 
. . . . 5
 | 
| 29 | 24, 25, 28 | fvmpt 5638 | 
. . . 4
 | 
| 30 | 19, 29 | sylbir 135 | 
. . 3
 | 
| 31 | 16, 30 | sylan9eq 2249 | 
. 2
 | 
| 32 | 31 | 3impb 1201 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-cnex 7970 ax-resscn 7971 | 
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-ov 5925 df-sup 7050 df-inf 7051 df-neg 8200 df-z 9327 df-odz 12378 | 
| This theorem is referenced by: odzcllem 12411 odzdvds 12414 | 
| Copyright terms: Public domain | W3C validator |