| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > odzval | Unicode version | ||
| Description: Value of the order
function. This is a function of functions; the inner
argument selects the base (i.e., mod |
| Ref | Expression |
|---|---|
| odzval |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 5954 |
. . . . . . . . 9
| |
| 2 | 1 | eqeq1d 2214 |
. . . . . . . 8
|
| 3 | 2 | rabbidv 2761 |
. . . . . . 7
|
| 4 | oveq1 5953 |
. . . . . . . . 9
| |
| 5 | 4 | eqeq1d 2214 |
. . . . . . . 8
|
| 6 | 5 | cbvrabv 2771 |
. . . . . . 7
|
| 7 | 3, 6 | eqtr4di 2256 |
. . . . . 6
|
| 8 | breq1 4048 |
. . . . . . . 8
| |
| 9 | 8 | rabbidv 2761 |
. . . . . . 7
|
| 10 | 9 | infeq1d 7116 |
. . . . . 6
|
| 11 | 7, 10 | mpteq12dv 4127 |
. . . . 5
|
| 12 | df-odz 12565 |
. . . . 5
| |
| 13 | zex 9383 |
. . . . . 6
| |
| 14 | 13 | mptrabex 5814 |
. . . . 5
|
| 15 | 11, 12, 14 | fvmpt 5658 |
. . . 4
|
| 16 | 15 | fveq1d 5580 |
. . 3
|
| 17 | oveq1 5953 |
. . . . . 6
| |
| 18 | 17 | eqeq1d 2214 |
. . . . 5
|
| 19 | 18 | elrab 2929 |
. . . 4
|
| 20 | oveq1 5953 |
. . . . . . . . 9
| |
| 21 | 20 | oveq1d 5961 |
. . . . . . . 8
|
| 22 | 21 | breq2d 4057 |
. . . . . . 7
|
| 23 | 22 | rabbidv 2761 |
. . . . . 6
|
| 24 | 23 | infeq1d 7116 |
. . . . 5
|
| 25 | eqid 2205 |
. . . . 5
| |
| 26 | reex 8061 |
. . . . . 6
| |
| 27 | infex2g 7138 |
. . . . . 6
| |
| 28 | 26, 27 | ax-mp 5 |
. . . . 5
|
| 29 | 24, 25, 28 | fvmpt 5658 |
. . . 4
|
| 30 | 19, 29 | sylbir 135 |
. . 3
|
| 31 | 16, 30 | sylan9eq 2258 |
. 2
|
| 32 | 31 | 3impb 1202 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4160 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-cnex 8018 ax-resscn 8019 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-iun 3929 df-br 4046 df-opab 4107 df-mpt 4108 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-f1 5277 df-fo 5278 df-f1o 5279 df-fv 5280 df-ov 5949 df-sup 7088 df-inf 7089 df-neg 8248 df-z 9375 df-odz 12565 |
| This theorem is referenced by: odzcllem 12598 odzdvds 12601 |
| Copyright terms: Public domain | W3C validator |