ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  odzval Unicode version

Theorem odzval 12597
Description: Value of the order function. This is a function of functions; the inner argument selects the base (i.e., mod  N for some  N, often prime) and the outer argument selects the integer or equivalence class (if you want to think about it that way) from the integers mod  N. In order to ensure the supremum is well-defined, we only define the expression when  A and  N are coprime. (Contributed by Mario Carneiro, 23-Feb-2014.) (Revised by AV, 26-Sep-2020.)
Assertion
Ref Expression
odzval  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  (
( odZ `  N ) `  A
)  = inf ( { n  e.  NN  |  N  ||  ( ( A ^ n )  - 
1 ) } ,  RR ,  <  ) )
Distinct variable groups:    n, N    A, n

Proof of Theorem odzval
Dummy variables  m  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5954 . . . . . . . . 9  |-  ( m  =  N  ->  (
x  gcd  m )  =  ( x  gcd  N ) )
21eqeq1d 2214 . . . . . . . 8  |-  ( m  =  N  ->  (
( x  gcd  m
)  =  1  <->  (
x  gcd  N )  =  1 ) )
32rabbidv 2761 . . . . . . 7  |-  ( m  =  N  ->  { x  e.  ZZ  |  ( x  gcd  m )  =  1 }  =  {
x  e.  ZZ  | 
( x  gcd  N
)  =  1 } )
4 oveq1 5953 . . . . . . . . 9  |-  ( n  =  x  ->  (
n  gcd  N )  =  ( x  gcd  N ) )
54eqeq1d 2214 . . . . . . . 8  |-  ( n  =  x  ->  (
( n  gcd  N
)  =  1  <->  (
x  gcd  N )  =  1 ) )
65cbvrabv 2771 . . . . . . 7  |-  { n  e.  ZZ  |  ( n  gcd  N )  =  1 }  =  {
x  e.  ZZ  | 
( x  gcd  N
)  =  1 }
73, 6eqtr4di 2256 . . . . . 6  |-  ( m  =  N  ->  { x  e.  ZZ  |  ( x  gcd  m )  =  1 }  =  {
n  e.  ZZ  | 
( n  gcd  N
)  =  1 } )
8 breq1 4048 . . . . . . . 8  |-  ( m  =  N  ->  (
m  ||  ( (
x ^ n )  -  1 )  <->  N  ||  (
( x ^ n
)  -  1 ) ) )
98rabbidv 2761 . . . . . . 7  |-  ( m  =  N  ->  { n  e.  NN  |  m  ||  ( ( x ^
n )  -  1 ) }  =  {
n  e.  NN  |  N  ||  ( ( x ^ n )  - 
1 ) } )
109infeq1d 7116 . . . . . 6  |-  ( m  =  N  -> inf ( { n  e.  NN  |  m  ||  ( ( x ^ n )  - 
1 ) } ,  RR ,  <  )  = inf ( { n  e.  NN  |  N  ||  ( ( x ^
n )  -  1 ) } ,  RR ,  <  ) )
117, 10mpteq12dv 4127 . . . . 5  |-  ( m  =  N  ->  (
x  e.  { x  e.  ZZ  |  ( x  gcd  m )  =  1 }  |-> inf ( { n  e.  NN  |  m  ||  ( ( x ^ n )  - 
1 ) } ,  RR ,  <  ) )  =  ( x  e. 
{ n  e.  ZZ  |  ( n  gcd  N )  =  1 } 
|-> inf ( { n  e.  NN  |  N  ||  ( ( x ^
n )  -  1 ) } ,  RR ,  <  ) ) )
12 df-odz 12565 . . . . 5  |-  odZ 
=  ( m  e.  NN  |->  ( x  e. 
{ x  e.  ZZ  |  ( x  gcd  m )  =  1 }  |-> inf ( { n  e.  NN  |  m  ||  ( ( x ^
n )  -  1 ) } ,  RR ,  <  ) ) )
13 zex 9383 . . . . . 6  |-  ZZ  e.  _V
1413mptrabex 5814 . . . . 5  |-  ( x  e.  { n  e.  ZZ  |  ( n  gcd  N )  =  1 }  |-> inf ( { n  e.  NN  |  N  ||  ( ( x ^ n )  - 
1 ) } ,  RR ,  <  ) )  e.  _V
1511, 12, 14fvmpt 5658 . . . 4  |-  ( N  e.  NN  ->  ( odZ `  N )  =  ( x  e. 
{ n  e.  ZZ  |  ( n  gcd  N )  =  1 } 
|-> inf ( { n  e.  NN  |  N  ||  ( ( x ^
n )  -  1 ) } ,  RR ,  <  ) ) )
1615fveq1d 5580 . . 3  |-  ( N  e.  NN  ->  (
( odZ `  N ) `  A
)  =  ( ( x  e.  { n  e.  ZZ  |  ( n  gcd  N )  =  1 }  |-> inf ( { n  e.  NN  |  N  ||  ( ( x ^ n )  - 
1 ) } ,  RR ,  <  ) ) `
 A ) )
17 oveq1 5953 . . . . . 6  |-  ( n  =  A  ->  (
n  gcd  N )  =  ( A  gcd  N ) )
1817eqeq1d 2214 . . . . 5  |-  ( n  =  A  ->  (
( n  gcd  N
)  =  1  <->  ( A  gcd  N )  =  1 ) )
1918elrab 2929 . . . 4  |-  ( A  e.  { n  e.  ZZ  |  ( n  gcd  N )  =  1 }  <->  ( A  e.  ZZ  /\  ( A  gcd  N )  =  1 ) )
20 oveq1 5953 . . . . . . . . 9  |-  ( x  =  A  ->  (
x ^ n )  =  ( A ^
n ) )
2120oveq1d 5961 . . . . . . . 8  |-  ( x  =  A  ->  (
( x ^ n
)  -  1 )  =  ( ( A ^ n )  - 
1 ) )
2221breq2d 4057 . . . . . . 7  |-  ( x  =  A  ->  ( N  ||  ( ( x ^ n )  - 
1 )  <->  N  ||  (
( A ^ n
)  -  1 ) ) )
2322rabbidv 2761 . . . . . 6  |-  ( x  =  A  ->  { n  e.  NN  |  N  ||  ( ( x ^
n )  -  1 ) }  =  {
n  e.  NN  |  N  ||  ( ( A ^ n )  - 
1 ) } )
2423infeq1d 7116 . . . . 5  |-  ( x  =  A  -> inf ( { n  e.  NN  |  N  ||  ( ( x ^ n )  - 
1 ) } ,  RR ,  <  )  = inf ( { n  e.  NN  |  N  ||  ( ( A ^
n )  -  1 ) } ,  RR ,  <  ) )
25 eqid 2205 . . . . 5  |-  ( x  e.  { n  e.  ZZ  |  ( n  gcd  N )  =  1 }  |-> inf ( { n  e.  NN  |  N  ||  ( ( x ^ n )  - 
1 ) } ,  RR ,  <  ) )  =  ( x  e. 
{ n  e.  ZZ  |  ( n  gcd  N )  =  1 } 
|-> inf ( { n  e.  NN  |  N  ||  ( ( x ^
n )  -  1 ) } ,  RR ,  <  ) )
26 reex 8061 . . . . . 6  |-  RR  e.  _V
27 infex2g 7138 . . . . . 6  |-  ( RR  e.  _V  -> inf ( { n  e.  NN  |  N  ||  ( ( A ^ n )  - 
1 ) } ,  RR ,  <  )  e. 
_V )
2826, 27ax-mp 5 . . . . 5  |- inf ( { n  e.  NN  |  N  ||  ( ( A ^ n )  - 
1 ) } ,  RR ,  <  )  e. 
_V
2924, 25, 28fvmpt 5658 . . . 4  |-  ( A  e.  { n  e.  ZZ  |  ( n  gcd  N )  =  1 }  ->  (
( x  e.  {
n  e.  ZZ  | 
( n  gcd  N
)  =  1 } 
|-> inf ( { n  e.  NN  |  N  ||  ( ( x ^
n )  -  1 ) } ,  RR ,  <  ) ) `  A )  = inf ( { n  e.  NN  |  N  ||  ( ( A ^ n )  -  1 ) } ,  RR ,  <  ) )
3019, 29sylbir 135 . . 3  |-  ( ( A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  -> 
( ( x  e. 
{ n  e.  ZZ  |  ( n  gcd  N )  =  1 } 
|-> inf ( { n  e.  NN  |  N  ||  ( ( x ^
n )  -  1 ) } ,  RR ,  <  ) ) `  A )  = inf ( { n  e.  NN  |  N  ||  ( ( A ^ n )  -  1 ) } ,  RR ,  <  ) )
3116, 30sylan9eq 2258 . 2  |-  ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  ( A  gcd  N
)  =  1 ) )  ->  ( ( odZ `  N ) `
 A )  = inf ( { n  e.  NN  |  N  ||  ( ( A ^
n )  -  1 ) } ,  RR ,  <  ) )
32313impb 1202 1  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  (
( odZ `  N ) `  A
)  = inf ( { n  e.  NN  |  N  ||  ( ( A ^ n )  - 
1 ) } ,  RR ,  <  ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    = wceq 1373    e. wcel 2176   {crab 2488   _Vcvv 2772   class class class wbr 4045    |-> cmpt 4106   ` cfv 5272  (class class class)co 5946  infcinf 7087   RRcr 7926   1c1 7928    < clt 8109    - cmin 8245   NNcn 9038   ZZcz 9374   ^cexp 10685    || cdvds 12131    gcd cgcd 12307   odZcodz 12563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-cnex 8018  ax-resscn 8019
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-ov 5949  df-sup 7088  df-inf 7089  df-neg 8248  df-z 9375  df-odz 12565
This theorem is referenced by:  odzcllem  12598  odzdvds  12601
  Copyright terms: Public domain W3C validator