ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  odzval Unicode version

Theorem odzval 12241
Description: Value of the order function. This is a function of functions; the inner argument selects the base (i.e., mod  N for some  N, often prime) and the outer argument selects the integer or equivalence class (if you want to think about it that way) from the integers mod  N. In order to ensure the supremum is well-defined, we only define the expression when  A and  N are coprime. (Contributed by Mario Carneiro, 23-Feb-2014.) (Revised by AV, 26-Sep-2020.)
Assertion
Ref Expression
odzval  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  (
( odZ `  N ) `  A
)  = inf ( { n  e.  NN  |  N  ||  ( ( A ^ n )  - 
1 ) } ,  RR ,  <  ) )
Distinct variable groups:    n, N    A, n

Proof of Theorem odzval
Dummy variables  m  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5883 . . . . . . . . 9  |-  ( m  =  N  ->  (
x  gcd  m )  =  ( x  gcd  N ) )
21eqeq1d 2186 . . . . . . . 8  |-  ( m  =  N  ->  (
( x  gcd  m
)  =  1  <->  (
x  gcd  N )  =  1 ) )
32rabbidv 2727 . . . . . . 7  |-  ( m  =  N  ->  { x  e.  ZZ  |  ( x  gcd  m )  =  1 }  =  {
x  e.  ZZ  | 
( x  gcd  N
)  =  1 } )
4 oveq1 5882 . . . . . . . . 9  |-  ( n  =  x  ->  (
n  gcd  N )  =  ( x  gcd  N ) )
54eqeq1d 2186 . . . . . . . 8  |-  ( n  =  x  ->  (
( n  gcd  N
)  =  1  <->  (
x  gcd  N )  =  1 ) )
65cbvrabv 2737 . . . . . . 7  |-  { n  e.  ZZ  |  ( n  gcd  N )  =  1 }  =  {
x  e.  ZZ  | 
( x  gcd  N
)  =  1 }
73, 6eqtr4di 2228 . . . . . 6  |-  ( m  =  N  ->  { x  e.  ZZ  |  ( x  gcd  m )  =  1 }  =  {
n  e.  ZZ  | 
( n  gcd  N
)  =  1 } )
8 breq1 4007 . . . . . . . 8  |-  ( m  =  N  ->  (
m  ||  ( (
x ^ n )  -  1 )  <->  N  ||  (
( x ^ n
)  -  1 ) ) )
98rabbidv 2727 . . . . . . 7  |-  ( m  =  N  ->  { n  e.  NN  |  m  ||  ( ( x ^
n )  -  1 ) }  =  {
n  e.  NN  |  N  ||  ( ( x ^ n )  - 
1 ) } )
109infeq1d 7011 . . . . . 6  |-  ( m  =  N  -> inf ( { n  e.  NN  |  m  ||  ( ( x ^ n )  - 
1 ) } ,  RR ,  <  )  = inf ( { n  e.  NN  |  N  ||  ( ( x ^
n )  -  1 ) } ,  RR ,  <  ) )
117, 10mpteq12dv 4086 . . . . 5  |-  ( m  =  N  ->  (
x  e.  { x  e.  ZZ  |  ( x  gcd  m )  =  1 }  |-> inf ( { n  e.  NN  |  m  ||  ( ( x ^ n )  - 
1 ) } ,  RR ,  <  ) )  =  ( x  e. 
{ n  e.  ZZ  |  ( n  gcd  N )  =  1 } 
|-> inf ( { n  e.  NN  |  N  ||  ( ( x ^
n )  -  1 ) } ,  RR ,  <  ) ) )
12 df-odz 12210 . . . . 5  |-  odZ 
=  ( m  e.  NN  |->  ( x  e. 
{ x  e.  ZZ  |  ( x  gcd  m )  =  1 }  |-> inf ( { n  e.  NN  |  m  ||  ( ( x ^
n )  -  1 ) } ,  RR ,  <  ) ) )
13 zex 9262 . . . . . 6  |-  ZZ  e.  _V
1413mptrabex 5745 . . . . 5  |-  ( x  e.  { n  e.  ZZ  |  ( n  gcd  N )  =  1 }  |-> inf ( { n  e.  NN  |  N  ||  ( ( x ^ n )  - 
1 ) } ,  RR ,  <  ) )  e.  _V
1511, 12, 14fvmpt 5594 . . . 4  |-  ( N  e.  NN  ->  ( odZ `  N )  =  ( x  e. 
{ n  e.  ZZ  |  ( n  gcd  N )  =  1 } 
|-> inf ( { n  e.  NN  |  N  ||  ( ( x ^
n )  -  1 ) } ,  RR ,  <  ) ) )
1615fveq1d 5518 . . 3  |-  ( N  e.  NN  ->  (
( odZ `  N ) `  A
)  =  ( ( x  e.  { n  e.  ZZ  |  ( n  gcd  N )  =  1 }  |-> inf ( { n  e.  NN  |  N  ||  ( ( x ^ n )  - 
1 ) } ,  RR ,  <  ) ) `
 A ) )
17 oveq1 5882 . . . . . 6  |-  ( n  =  A  ->  (
n  gcd  N )  =  ( A  gcd  N ) )
1817eqeq1d 2186 . . . . 5  |-  ( n  =  A  ->  (
( n  gcd  N
)  =  1  <->  ( A  gcd  N )  =  1 ) )
1918elrab 2894 . . . 4  |-  ( A  e.  { n  e.  ZZ  |  ( n  gcd  N )  =  1 }  <->  ( A  e.  ZZ  /\  ( A  gcd  N )  =  1 ) )
20 oveq1 5882 . . . . . . . . 9  |-  ( x  =  A  ->  (
x ^ n )  =  ( A ^
n ) )
2120oveq1d 5890 . . . . . . . 8  |-  ( x  =  A  ->  (
( x ^ n
)  -  1 )  =  ( ( A ^ n )  - 
1 ) )
2221breq2d 4016 . . . . . . 7  |-  ( x  =  A  ->  ( N  ||  ( ( x ^ n )  - 
1 )  <->  N  ||  (
( A ^ n
)  -  1 ) ) )
2322rabbidv 2727 . . . . . 6  |-  ( x  =  A  ->  { n  e.  NN  |  N  ||  ( ( x ^
n )  -  1 ) }  =  {
n  e.  NN  |  N  ||  ( ( A ^ n )  - 
1 ) } )
2423infeq1d 7011 . . . . 5  |-  ( x  =  A  -> inf ( { n  e.  NN  |  N  ||  ( ( x ^ n )  - 
1 ) } ,  RR ,  <  )  = inf ( { n  e.  NN  |  N  ||  ( ( A ^
n )  -  1 ) } ,  RR ,  <  ) )
25 eqid 2177 . . . . 5  |-  ( x  e.  { n  e.  ZZ  |  ( n  gcd  N )  =  1 }  |-> inf ( { n  e.  NN  |  N  ||  ( ( x ^ n )  - 
1 ) } ,  RR ,  <  ) )  =  ( x  e. 
{ n  e.  ZZ  |  ( n  gcd  N )  =  1 } 
|-> inf ( { n  e.  NN  |  N  ||  ( ( x ^
n )  -  1 ) } ,  RR ,  <  ) )
26 reex 7945 . . . . . 6  |-  RR  e.  _V
27 infex2g 7033 . . . . . 6  |-  ( RR  e.  _V  -> inf ( { n  e.  NN  |  N  ||  ( ( A ^ n )  - 
1 ) } ,  RR ,  <  )  e. 
_V )
2826, 27ax-mp 5 . . . . 5  |- inf ( { n  e.  NN  |  N  ||  ( ( A ^ n )  - 
1 ) } ,  RR ,  <  )  e. 
_V
2924, 25, 28fvmpt 5594 . . . 4  |-  ( A  e.  { n  e.  ZZ  |  ( n  gcd  N )  =  1 }  ->  (
( x  e.  {
n  e.  ZZ  | 
( n  gcd  N
)  =  1 } 
|-> inf ( { n  e.  NN  |  N  ||  ( ( x ^
n )  -  1 ) } ,  RR ,  <  ) ) `  A )  = inf ( { n  e.  NN  |  N  ||  ( ( A ^ n )  -  1 ) } ,  RR ,  <  ) )
3019, 29sylbir 135 . . 3  |-  ( ( A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  -> 
( ( x  e. 
{ n  e.  ZZ  |  ( n  gcd  N )  =  1 } 
|-> inf ( { n  e.  NN  |  N  ||  ( ( x ^
n )  -  1 ) } ,  RR ,  <  ) ) `  A )  = inf ( { n  e.  NN  |  N  ||  ( ( A ^ n )  -  1 ) } ,  RR ,  <  ) )
3116, 30sylan9eq 2230 . 2  |-  ( ( N  e.  NN  /\  ( A  e.  ZZ  /\  ( A  gcd  N
)  =  1 ) )  ->  ( ( odZ `  N ) `
 A )  = inf ( { n  e.  NN  |  N  ||  ( ( A ^
n )  -  1 ) } ,  RR ,  <  ) )
32313impb 1199 1  |-  ( ( N  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  N )  =  1 )  ->  (
( odZ `  N ) `  A
)  = inf ( { n  e.  NN  |  N  ||  ( ( A ^ n )  - 
1 ) } ,  RR ,  <  ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 978    = wceq 1353    e. wcel 2148   {crab 2459   _Vcvv 2738   class class class wbr 4004    |-> cmpt 4065   ` cfv 5217  (class class class)co 5875  infcinf 6982   RRcr 7810   1c1 7812    < clt 7992    - cmin 8128   NNcn 8919   ZZcz 9253   ^cexp 10519    || cdvds 11794    gcd cgcd 11943   odZcodz 12208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-cnex 7902  ax-resscn 7903
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-ov 5878  df-sup 6983  df-inf 6984  df-neg 8131  df-z 9254  df-odz 12210
This theorem is referenced by:  odzcllem  12242  odzdvds  12245
  Copyright terms: Public domain W3C validator