![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > infex2g | GIF version |
Description: Existence of infimum. (Contributed by Jim Kingdon, 1-Oct-2024.) |
Ref | Expression |
---|---|
infex2g | ⊢ (𝐴 ∈ 𝐶 → inf(𝐵, 𝐴, 𝑅) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-inf 7002 | . 2 ⊢ inf(𝐵, 𝐴, 𝑅) = sup(𝐵, 𝐴, ◡𝑅) | |
2 | supex2g 7050 | . 2 ⊢ (𝐴 ∈ 𝐶 → sup(𝐵, 𝐴, ◡𝑅) ∈ V) | |
3 | 1, 2 | eqeltrid 2276 | 1 ⊢ (𝐴 ∈ 𝐶 → inf(𝐵, 𝐴, 𝑅) ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2160 Vcvv 2752 ◡ccnv 4640 supcsup 6999 infcinf 7000 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-un 4448 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-rex 2474 df-rab 2477 df-v 2754 df-in 3150 df-ss 3157 df-uni 3825 df-sup 7001 df-inf 7002 |
This theorem is referenced by: odzval 12259 |
Copyright terms: Public domain | W3C validator |