ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infex2g GIF version

Theorem infex2g 7100
Description: Existence of infimum. (Contributed by Jim Kingdon, 1-Oct-2024.)
Assertion
Ref Expression
infex2g (𝐴𝐶 → inf(𝐵, 𝐴, 𝑅) ∈ V)

Proof of Theorem infex2g
StepHypRef Expression
1 df-inf 7051 . 2 inf(𝐵, 𝐴, 𝑅) = sup(𝐵, 𝐴, 𝑅)
2 supex2g 7099 . 2 (𝐴𝐶 → sup(𝐵, 𝐴, 𝑅) ∈ V)
31, 2eqeltrid 2283 1 (𝐴𝐶 → inf(𝐵, 𝐴, 𝑅) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2167  Vcvv 2763  ccnv 4662  supcsup 7048  infcinf 7049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-rab 2484  df-v 2765  df-in 3163  df-ss 3170  df-uni 3840  df-sup 7050  df-inf 7051
This theorem is referenced by:  odzval  12410
  Copyright terms: Public domain W3C validator