Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > infex2g | GIF version |
Description: Existence of infimum. (Contributed by Jim Kingdon, 1-Oct-2024.) |
Ref | Expression |
---|---|
infex2g | ⊢ (𝐴 ∈ 𝐶 → inf(𝐵, 𝐴, 𝑅) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-inf 6946 | . 2 ⊢ inf(𝐵, 𝐴, 𝑅) = sup(𝐵, 𝐴, ◡𝑅) | |
2 | supex2g 6994 | . 2 ⊢ (𝐴 ∈ 𝐶 → sup(𝐵, 𝐴, ◡𝑅) ∈ V) | |
3 | 1, 2 | eqeltrid 2252 | 1 ⊢ (𝐴 ∈ 𝐶 → inf(𝐵, 𝐴, 𝑅) ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2136 Vcvv 2725 ◡ccnv 4602 supcsup 6943 infcinf 6944 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4099 ax-un 4410 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-rex 2449 df-rab 2452 df-v 2727 df-in 3121 df-ss 3128 df-uni 3789 df-sup 6945 df-inf 6946 |
This theorem is referenced by: odzval 12169 |
Copyright terms: Public domain | W3C validator |