ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  infex2g GIF version

Theorem infex2g 7051
Description: Existence of infimum. (Contributed by Jim Kingdon, 1-Oct-2024.)
Assertion
Ref Expression
infex2g (𝐴𝐶 → inf(𝐵, 𝐴, 𝑅) ∈ V)

Proof of Theorem infex2g
StepHypRef Expression
1 df-inf 7002 . 2 inf(𝐵, 𝐴, 𝑅) = sup(𝐵, 𝐴, 𝑅)
2 supex2g 7050 . 2 (𝐴𝐶 → sup(𝐵, 𝐴, 𝑅) ∈ V)
31, 2eqeltrid 2276 1 (𝐴𝐶 → inf(𝐵, 𝐴, 𝑅) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2160  Vcvv 2752  ccnv 4640  supcsup 6999  infcinf 7000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-un 4448
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-rex 2474  df-rab 2477  df-v 2754  df-in 3150  df-ss 3157  df-uni 3825  df-sup 7001  df-inf 7002
This theorem is referenced by:  odzval  12259
  Copyright terms: Public domain W3C validator