Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqeltrid | Unicode version |
Description: B membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
Ref | Expression |
---|---|
eqeltrid.1 | |
eqeltrid.2 |
Ref | Expression |
---|---|
eqeltrid |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeltrid.1 | . . 3 | |
2 | 1 | a1i 9 | . 2 |
3 | eqeltrid.2 | . 2 | |
4 | 2, 3 | eqeltrd 2247 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1348 wcel 2141 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-4 1503 ax-17 1519 ax-ial 1527 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-cleq 2163 df-clel 2166 |
This theorem is referenced by: eqeltrrid 2258 csbexga 4115 otexg 4213 tpexg 4427 dmresexg 4912 f1oabexg 5452 funfvex 5511 riotaexg 5811 riotaprop 5830 fnovex 5884 ovexg 5885 fovrn 5993 fnovrn 5998 cofunexg 6086 cofunex2g 6087 abrexex2g 6097 xpexgALT 6110 mpofvex 6180 tfrex 6345 frec0g 6374 freccllem 6379 ecexg 6515 qsexg 6567 pmex 6629 elixpsn 6711 diffifi 6870 unfidisj 6897 prfidisj 6902 tpfidisj 6903 ssfirab 6909 ssfidc 6910 fnfi 6912 funrnfi 6917 iunfidisj 6921 infclti 6998 supex2g 7008 infex2g 7009 djuex 7018 ctssdccl 7086 addvalex 7799 negcl 8112 intqfrac2 10268 intfracq 10269 frec2uzzd 10349 frecuzrdgrrn 10357 iseqf1olemqpcl 10445 seq3f1olemqsum 10449 bcval5 10690 xrmaxiflemval 11206 climmpt 11256 reccn2ap 11269 zsumdc 11340 fsumzcl2 11361 fsump1i 11389 fsumabs 11421 hash2iun1dif1 11436 mertenslemi1 11491 fprodcllemf 11569 algrf 11992 algcvg 11995 algcvga 11998 algfx 11999 eucalgcvga 12005 eucalg 12006 crth 12171 phimullem 12172 eulerthlemth 12179 prmdiv 12182 pythagtriplem11 12221 pythagtriplem13 12223 pcprecl 12236 infpnlem1 12304 infpnlem2 12305 4sqlem5 12327 mul4sqlem 12338 ennnfonelemj0 12349 ennnfonelemom 12356 ressid 12472 1strbas 12510 2strbasg 12512 2stropg 12513 restid 12583 topnvalg 12584 topnidg 12585 plusffvalg 12609 plusfvalg 12610 grpidvalg 12620 ismhm 12678 0mhm 12697 topopn 12765 topcld 12868 uncld 12872 iuncld 12874 unicld 12875 tgrest 12928 restin 12935 cnco 12980 cnrest 12994 cnptoprest2 12999 lmss 13005 txbasval 13026 txcn 13034 cnmpt12f 13045 hmeoco 13075 idhmeo 13076 blres 13193 metrest 13265 qtopbasss 13280 tgqioo 13306 divcnap 13314 fsumcncntop 13315 cncfmet 13338 cdivcncfap 13346 cnrehmeocntop 13352 cnplimcim 13395 limccnpcntop 13403 limccnp2lem 13404 limccnp2cntop 13405 dvfvalap 13409 2sqlem8 13718 bj-snexg 13912 trilpolemcl 14034 |
Copyright terms: Public domain | W3C validator |