Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqeltrid | Unicode version |
Description: B membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
Ref | Expression |
---|---|
eqeltrid.1 | |
eqeltrid.2 |
Ref | Expression |
---|---|
eqeltrid |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeltrid.1 | . . 3 | |
2 | 1 | a1i 9 | . 2 |
3 | eqeltrid.2 | . 2 | |
4 | 2, 3 | eqeltrd 2247 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1348 wcel 2141 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-4 1503 ax-17 1519 ax-ial 1527 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-cleq 2163 df-clel 2166 |
This theorem is referenced by: eqeltrrid 2258 csbexga 4117 otexg 4215 tpexg 4429 dmresexg 4914 f1oabexg 5454 funfvex 5513 riotaexg 5813 riotaprop 5832 fnovex 5886 ovexg 5887 fovrn 5995 fnovrn 6000 cofunexg 6088 cofunex2g 6089 abrexex2g 6099 xpexgALT 6112 mpofvex 6182 tfrex 6347 frec0g 6376 freccllem 6381 ecexg 6517 qsexg 6569 pmex 6631 elixpsn 6713 diffifi 6872 unfidisj 6899 prfidisj 6904 tpfidisj 6905 ssfirab 6911 ssfidc 6912 fnfi 6914 funrnfi 6919 iunfidisj 6923 infclti 7000 supex2g 7010 infex2g 7011 djuex 7020 ctssdccl 7088 addvalex 7806 negcl 8119 intqfrac2 10275 intfracq 10276 frec2uzzd 10356 frecuzrdgrrn 10364 iseqf1olemqpcl 10452 seq3f1olemqsum 10456 bcval5 10697 xrmaxiflemval 11213 climmpt 11263 reccn2ap 11276 zsumdc 11347 fsumzcl2 11368 fsump1i 11396 fsumabs 11428 hash2iun1dif1 11443 mertenslemi1 11498 fprodcllemf 11576 algrf 11999 algcvg 12002 algcvga 12005 algfx 12006 eucalgcvga 12012 eucalg 12013 crth 12178 phimullem 12179 eulerthlemth 12186 prmdiv 12189 pythagtriplem11 12228 pythagtriplem13 12230 pcprecl 12243 infpnlem1 12311 infpnlem2 12312 4sqlem5 12334 mul4sqlem 12345 ennnfonelemj0 12356 ennnfonelemom 12363 ressid 12479 1strbas 12517 2strbasg 12519 2stropg 12520 restid 12590 topnvalg 12591 topnidg 12592 plusffvalg 12616 plusfvalg 12617 grpidvalg 12627 ismhm 12685 0mhm 12704 grpinvfvalg 12745 grpinvval 12746 grpinvfng 12747 grpsubfvalg 12748 grpsubval 12749 topopn 12800 topcld 12903 uncld 12907 iuncld 12909 unicld 12910 tgrest 12963 restin 12970 cnco 13015 cnrest 13029 cnptoprest2 13034 lmss 13040 txbasval 13061 txcn 13069 cnmpt12f 13080 hmeoco 13110 idhmeo 13111 blres 13228 metrest 13300 qtopbasss 13315 tgqioo 13341 divcnap 13349 fsumcncntop 13350 cncfmet 13373 cdivcncfap 13381 cnrehmeocntop 13387 cnplimcim 13430 limccnpcntop 13438 limccnp2lem 13439 limccnp2cntop 13440 dvfvalap 13444 2sqlem8 13753 bj-snexg 13947 trilpolemcl 14069 |
Copyright terms: Public domain | W3C validator |