| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > inteqi | Unicode version | ||
| Description: Equality inference for class intersection. (Contributed by NM, 2-Sep-2003.) | 
| Ref | Expression | 
|---|---|
| inteqi.1 | 
 | 
| Ref | Expression | 
|---|---|
| inteqi | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | inteqi.1 | 
. 2
 | |
| 2 | inteq 3877 | 
. 2
 | |
| 3 | 1, 2 | ax-mp 5 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-int 3875 | 
| This theorem is referenced by: elintrab 3886 ssintrab 3897 intmin2 3900 intsng 3908 intexrabim 4186 op1stb 4513 bm2.5ii 4532 dfiin3g 4924 op2ndb 5153 bj-dfom 15579 bj-omind 15580 | 
| Copyright terms: Public domain | W3C validator |