ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inteqi Unicode version

Theorem inteqi 3835
Description: Equality inference for class intersection. (Contributed by NM, 2-Sep-2003.)
Hypothesis
Ref Expression
inteqi.1  |-  A  =  B
Assertion
Ref Expression
inteqi  |-  |^| A  =  |^| B

Proof of Theorem inteqi
StepHypRef Expression
1 inteqi.1 . 2  |-  A  =  B
2 inteq 3834 . 2  |-  ( A  =  B  ->  |^| A  =  |^| B )
31, 2ax-mp 5 1  |-  |^| A  =  |^| B
Colors of variables: wff set class
Syntax hints:    = wceq 1348   |^|cint 3831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-int 3832
This theorem is referenced by:  elintrab  3843  ssintrab  3854  intmin2  3857  intsng  3865  intexrabim  4139  op1stb  4463  bm2.5ii  4480  dfiin3g  4869  op2ndb  5094  bj-dfom  13968  bj-omind  13969
  Copyright terms: Public domain W3C validator