ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inteqi Unicode version

Theorem inteqi 3903
Description: Equality inference for class intersection. (Contributed by NM, 2-Sep-2003.)
Hypothesis
Ref Expression
inteqi.1  |-  A  =  B
Assertion
Ref Expression
inteqi  |-  |^| A  =  |^| B

Proof of Theorem inteqi
StepHypRef Expression
1 inteqi.1 . 2  |-  A  =  B
2 inteq 3902 . 2  |-  ( A  =  B  ->  |^| A  =  |^| B )
31, 2ax-mp 5 1  |-  |^| A  =  |^| B
Colors of variables: wff set class
Syntax hints:    = wceq 1373   |^|cint 3899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-int 3900
This theorem is referenced by:  elintrab  3911  ssintrab  3922  intmin2  3925  intsng  3933  intexrabim  4213  op1stb  4543  bm2.5ii  4562  dfiin3g  4955  op2ndb  5185  bj-dfom  16068  bj-omind  16069
  Copyright terms: Public domain W3C validator