Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > inteqi | Unicode version |
Description: Equality inference for class intersection. (Contributed by NM, 2-Sep-2003.) |
Ref | Expression |
---|---|
inteqi.1 |
Ref | Expression |
---|---|
inteqi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inteqi.1 | . 2 | |
2 | inteq 3827 | . 2 | |
3 | 1, 2 | ax-mp 5 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1343 cint 3824 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-int 3825 |
This theorem is referenced by: elintrab 3836 ssintrab 3847 intmin2 3850 intsng 3858 intexrabim 4132 op1stb 4456 bm2.5ii 4473 dfiin3g 4862 op2ndb 5087 bj-dfom 13815 bj-omind 13816 |
Copyright terms: Public domain | W3C validator |