ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intmin2 GIF version

Theorem intmin2 3896
Description: Any set is the smallest of all sets that include it. (Contributed by NM, 20-Sep-2003.)
Hypothesis
Ref Expression
intmin2.1 𝐴 ∈ V
Assertion
Ref Expression
intmin2 {𝑥𝐴𝑥} = 𝐴
Distinct variable group:   𝑥,𝐴

Proof of Theorem intmin2
StepHypRef Expression
1 rabab 2781 . . 3 {𝑥 ∈ V ∣ 𝐴𝑥} = {𝑥𝐴𝑥}
21inteqi 3874 . 2 {𝑥 ∈ V ∣ 𝐴𝑥} = {𝑥𝐴𝑥}
3 intmin2.1 . . 3 𝐴 ∈ V
4 intmin 3890 . . 3 (𝐴 ∈ V → {𝑥 ∈ V ∣ 𝐴𝑥} = 𝐴)
53, 4ax-mp 5 . 2 {𝑥 ∈ V ∣ 𝐴𝑥} = 𝐴
62, 5eqtr3i 2216 1 {𝑥𝐴𝑥} = 𝐴
Colors of variables: wff set class
Syntax hints:   = wceq 1364  wcel 2164  {cab 2179  {crab 2476  Vcvv 2760  wss 3153   cint 3870
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rab 2481  df-v 2762  df-in 3159  df-ss 3166  df-int 3871
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator