![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > intmin2 | GIF version |
Description: Any set is the smallest of all sets that include it. (Contributed by NM, 20-Sep-2003.) |
Ref | Expression |
---|---|
intmin2.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
intmin2 | ⊢ ∩ {𝑥 ∣ 𝐴 ⊆ 𝑥} = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabab 2760 | . . 3 ⊢ {𝑥 ∈ V ∣ 𝐴 ⊆ 𝑥} = {𝑥 ∣ 𝐴 ⊆ 𝑥} | |
2 | 1 | inteqi 3850 | . 2 ⊢ ∩ {𝑥 ∈ V ∣ 𝐴 ⊆ 𝑥} = ∩ {𝑥 ∣ 𝐴 ⊆ 𝑥} |
3 | intmin2.1 | . . 3 ⊢ 𝐴 ∈ V | |
4 | intmin 3866 | . . 3 ⊢ (𝐴 ∈ V → ∩ {𝑥 ∈ V ∣ 𝐴 ⊆ 𝑥} = 𝐴) | |
5 | 3, 4 | ax-mp 5 | . 2 ⊢ ∩ {𝑥 ∈ V ∣ 𝐴 ⊆ 𝑥} = 𝐴 |
6 | 2, 5 | eqtr3i 2200 | 1 ⊢ ∩ {𝑥 ∣ 𝐴 ⊆ 𝑥} = 𝐴 |
Colors of variables: wff set class |
Syntax hints: = wceq 1353 ∈ wcel 2148 {cab 2163 {crab 2459 Vcvv 2739 ⊆ wss 3131 ∩ cint 3846 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rab 2464 df-v 2741 df-in 3137 df-ss 3144 df-int 3847 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |