Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > intmin2 | GIF version |
Description: Any set is the smallest of all sets that include it. (Contributed by NM, 20-Sep-2003.) |
Ref | Expression |
---|---|
intmin2.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
intmin2 | ⊢ ∩ {𝑥 ∣ 𝐴 ⊆ 𝑥} = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabab 2747 | . . 3 ⊢ {𝑥 ∈ V ∣ 𝐴 ⊆ 𝑥} = {𝑥 ∣ 𝐴 ⊆ 𝑥} | |
2 | 1 | inteqi 3828 | . 2 ⊢ ∩ {𝑥 ∈ V ∣ 𝐴 ⊆ 𝑥} = ∩ {𝑥 ∣ 𝐴 ⊆ 𝑥} |
3 | intmin2.1 | . . 3 ⊢ 𝐴 ∈ V | |
4 | intmin 3844 | . . 3 ⊢ (𝐴 ∈ V → ∩ {𝑥 ∈ V ∣ 𝐴 ⊆ 𝑥} = 𝐴) | |
5 | 3, 4 | ax-mp 5 | . 2 ⊢ ∩ {𝑥 ∈ V ∣ 𝐴 ⊆ 𝑥} = 𝐴 |
6 | 2, 5 | eqtr3i 2188 | 1 ⊢ ∩ {𝑥 ∣ 𝐴 ⊆ 𝑥} = 𝐴 |
Colors of variables: wff set class |
Syntax hints: = wceq 1343 ∈ wcel 2136 {cab 2151 {crab 2448 Vcvv 2726 ⊆ wss 3116 ∩ cint 3824 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rab 2453 df-v 2728 df-in 3122 df-ss 3129 df-int 3825 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |