| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > intmin2 | GIF version | ||
| Description: Any set is the smallest of all sets that include it. (Contributed by NM, 20-Sep-2003.) |
| Ref | Expression |
|---|---|
| intmin2.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| intmin2 | ⊢ ∩ {𝑥 ∣ 𝐴 ⊆ 𝑥} = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabab 2801 | . . 3 ⊢ {𝑥 ∈ V ∣ 𝐴 ⊆ 𝑥} = {𝑥 ∣ 𝐴 ⊆ 𝑥} | |
| 2 | 1 | inteqi 3906 | . 2 ⊢ ∩ {𝑥 ∈ V ∣ 𝐴 ⊆ 𝑥} = ∩ {𝑥 ∣ 𝐴 ⊆ 𝑥} |
| 3 | intmin2.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 4 | intmin 3922 | . . 3 ⊢ (𝐴 ∈ V → ∩ {𝑥 ∈ V ∣ 𝐴 ⊆ 𝑥} = 𝐴) | |
| 5 | 3, 4 | ax-mp 5 | . 2 ⊢ ∩ {𝑥 ∈ V ∣ 𝐴 ⊆ 𝑥} = 𝐴 |
| 6 | 2, 5 | eqtr3i 2232 | 1 ⊢ ∩ {𝑥 ∣ 𝐴 ⊆ 𝑥} = 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1375 ∈ wcel 2180 {cab 2195 {crab 2492 Vcvv 2779 ⊆ wss 3177 ∩ cint 3902 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rab 2497 df-v 2781 df-in 3183 df-ss 3190 df-int 3903 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |