ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intmin2 GIF version

Theorem intmin2 3699
Description: Any set is the smallest of all sets that include it. (Contributed by NM, 20-Sep-2003.)
Hypothesis
Ref Expression
intmin2.1 𝐴 ∈ V
Assertion
Ref Expression
intmin2 {𝑥𝐴𝑥} = 𝐴
Distinct variable group:   𝑥,𝐴

Proof of Theorem intmin2
StepHypRef Expression
1 rabab 2634 . . 3 {𝑥 ∈ V ∣ 𝐴𝑥} = {𝑥𝐴𝑥}
21inteqi 3677 . 2 {𝑥 ∈ V ∣ 𝐴𝑥} = {𝑥𝐴𝑥}
3 intmin2.1 . . 3 𝐴 ∈ V
4 intmin 3693 . . 3 (𝐴 ∈ V → {𝑥 ∈ V ∣ 𝐴𝑥} = 𝐴)
53, 4ax-mp 7 . 2 {𝑥 ∈ V ∣ 𝐴𝑥} = 𝐴
62, 5eqtr3i 2107 1 {𝑥𝐴𝑥} = 𝐴
Colors of variables: wff set class
Syntax hints:   = wceq 1287  wcel 1436  {cab 2071  {crab 2359  Vcvv 2615  wss 2988   cint 3673
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067
This theorem depends on definitions:  df-bi 115  df-tru 1290  df-nf 1393  df-sb 1690  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ral 2360  df-rab 2364  df-v 2617  df-in 2994  df-ss 3001  df-int 3674
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator