ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intsn Unicode version

Theorem intsn 3854
Description: The intersection of a singleton is its member. Theorem 70 of [Suppes] p. 41. (Contributed by NM, 29-Sep-2002.)
Hypothesis
Ref Expression
intsn.1  |-  A  e. 
_V
Assertion
Ref Expression
intsn  |-  |^| { A }  =  A

Proof of Theorem intsn
StepHypRef Expression
1 intsn.1 . 2  |-  A  e. 
_V
2 intsng 3853 . 2  |-  ( A  e.  _V  ->  |^| { A }  =  A )
31, 2ax-mp 5 1  |-  |^| { A }  =  A
Colors of variables: wff set class
Syntax hints:    = wceq 1342    e. wcel 2135   _Vcvv 2722   {csn 3571   |^|cint 3819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-ext 2146
This theorem depends on definitions:  df-bi 116  df-tru 1345  df-nf 1448  df-sb 1750  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ral 2447  df-v 2724  df-un 3116  df-in 3118  df-sn 3577  df-pr 3578  df-int 3820
This theorem is referenced by:  uniintsnr  3855  intunsn  3857  op1stb  4451  op2ndb  5082  ssfii  6931
  Copyright terms: Public domain W3C validator