ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intsn Unicode version

Theorem intsn 3880
Description: The intersection of a singleton is its member. Theorem 70 of [Suppes] p. 41. (Contributed by NM, 29-Sep-2002.)
Hypothesis
Ref Expression
intsn.1  |-  A  e. 
_V
Assertion
Ref Expression
intsn  |-  |^| { A }  =  A

Proof of Theorem intsn
StepHypRef Expression
1 intsn.1 . 2  |-  A  e. 
_V
2 intsng 3879 . 2  |-  ( A  e.  _V  ->  |^| { A }  =  A )
31, 2ax-mp 5 1  |-  |^| { A }  =  A
Colors of variables: wff set class
Syntax hints:    = wceq 1353    e. wcel 2148   _Vcvv 2738   {csn 3593   |^|cint 3845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-v 2740  df-un 3134  df-in 3136  df-sn 3599  df-pr 3600  df-int 3846
This theorem is referenced by:  uniintsnr  3881  intunsn  3883  op1stb  4479  op2ndb  5113  ssfii  6973
  Copyright terms: Public domain W3C validator