ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intsn Unicode version

Theorem intsn 3909
Description: The intersection of a singleton is its member. Theorem 70 of [Suppes] p. 41. (Contributed by NM, 29-Sep-2002.)
Hypothesis
Ref Expression
intsn.1  |-  A  e. 
_V
Assertion
Ref Expression
intsn  |-  |^| { A }  =  A

Proof of Theorem intsn
StepHypRef Expression
1 intsn.1 . 2  |-  A  e. 
_V
2 intsng 3908 . 2  |-  ( A  e.  _V  ->  |^| { A }  =  A )
31, 2ax-mp 5 1  |-  |^| { A }  =  A
Colors of variables: wff set class
Syntax hints:    = wceq 1364    e. wcel 2167   _Vcvv 2763   {csn 3622   |^|cint 3874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-v 2765  df-un 3161  df-in 3163  df-sn 3628  df-pr 3629  df-int 3875
This theorem is referenced by:  uniintsnr  3910  intunsn  3912  op1stb  4513  op2ndb  5153  ssfii  7040
  Copyright terms: Public domain W3C validator