Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  intsn Unicode version

Theorem intsn 3806
 Description: The intersection of a singleton is its member. Theorem 70 of [Suppes] p. 41. (Contributed by NM, 29-Sep-2002.)
Hypothesis
Ref Expression
intsn.1
Assertion
Ref Expression
intsn

Proof of Theorem intsn
StepHypRef Expression
1 intsn.1 . 2
2 intsng 3805 . 2
31, 2ax-mp 5 1
 Colors of variables: wff set class Syntax hints:   wceq 1331   wcel 1480  cvv 2686  csn 3527  cint 3771 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121 This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-v 2688  df-un 3075  df-in 3077  df-sn 3533  df-pr 3534  df-int 3772 This theorem is referenced by:  uniintsnr  3807  intunsn  3809  op1stb  4399  op2ndb  5022  ssfii  6862
 Copyright terms: Public domain W3C validator