ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intsn Unicode version

Theorem intsn 3958
Description: The intersection of a singleton is its member. Theorem 70 of [Suppes] p. 41. (Contributed by NM, 29-Sep-2002.)
Hypothesis
Ref Expression
intsn.1  |-  A  e. 
_V
Assertion
Ref Expression
intsn  |-  |^| { A }  =  A

Proof of Theorem intsn
StepHypRef Expression
1 intsn.1 . 2  |-  A  e. 
_V
2 intsng 3957 . 2  |-  ( A  e.  _V  ->  |^| { A }  =  A )
31, 2ax-mp 5 1  |-  |^| { A }  =  A
Colors of variables: wff set class
Syntax hints:    = wceq 1395    e. wcel 2200   _Vcvv 2799   {csn 3666   |^|cint 3923
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-v 2801  df-un 3201  df-in 3203  df-sn 3672  df-pr 3673  df-int 3924
This theorem is referenced by:  uniintsnr  3959  intunsn  3961  op1stb  4569  op2ndb  5212  ssfii  7141
  Copyright terms: Public domain W3C validator