ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  op2ndb Unicode version

Theorem op2ndb 5165
Description: Extract the second member of an ordered pair. Theorem 5.12(ii) of [Monk1] p. 52. (See op1stb 4524 to extract the first member and op2nda 5166 for an alternate version.) (Contributed by NM, 25-Nov-2003.)
Hypotheses
Ref Expression
cnvsn.1  |-  A  e. 
_V
cnvsn.2  |-  B  e. 
_V
Assertion
Ref Expression
op2ndb  |-  |^| |^| |^| `' { <. A ,  B >. }  =  B

Proof of Theorem op2ndb
StepHypRef Expression
1 cnvsn.1 . . . . . . 7  |-  A  e. 
_V
2 cnvsn.2 . . . . . . 7  |-  B  e. 
_V
31, 2cnvsn 5164 . . . . . 6  |-  `' { <. A ,  B >. }  =  { <. B ,  A >. }
43inteqi 3888 . . . . 5  |-  |^| `' { <. A ,  B >. }  =  |^| { <. B ,  A >. }
52, 1opex 4272 . . . . . 6  |-  <. B ,  A >.  e.  _V
65intsn 3919 . . . . 5  |-  |^| { <. B ,  A >. }  =  <. B ,  A >.
74, 6eqtri 2225 . . . 4  |-  |^| `' { <. A ,  B >. }  =  <. B ,  A >.
87inteqi 3888 . . 3  |-  |^| |^| `' { <. A ,  B >. }  =  |^| <. B ,  A >.
98inteqi 3888 . 2  |-  |^| |^| |^| `' { <. A ,  B >. }  =  |^| |^| <. B ,  A >.
102, 1op1stb 4524 . 2  |-  |^| |^| <. B ,  A >.  =  B
119, 10eqtri 2225 1  |-  |^| |^| |^| `' { <. A ,  B >. }  =  B
Colors of variables: wff set class
Syntax hints:    = wceq 1372    e. wcel 2175   _Vcvv 2771   {csn 3632   <.cop 3635   |^|cint 3884   `'ccnv 4673
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-int 3885  df-br 4044  df-opab 4105  df-xp 4680  df-rel 4681  df-cnv 4682
This theorem is referenced by:  2ndval2  6241
  Copyright terms: Public domain W3C validator