ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  op2ndb Unicode version

Theorem op2ndb 5087
Description: Extract the second member of an ordered pair. Theorem 5.12(ii) of [Monk1] p. 52. (See op1stb 4456 to extract the first member and op2nda 5088 for an alternate version.) (Contributed by NM, 25-Nov-2003.)
Hypotheses
Ref Expression
cnvsn.1  |-  A  e. 
_V
cnvsn.2  |-  B  e. 
_V
Assertion
Ref Expression
op2ndb  |-  |^| |^| |^| `' { <. A ,  B >. }  =  B

Proof of Theorem op2ndb
StepHypRef Expression
1 cnvsn.1 . . . . . . 7  |-  A  e. 
_V
2 cnvsn.2 . . . . . . 7  |-  B  e. 
_V
31, 2cnvsn 5086 . . . . . 6  |-  `' { <. A ,  B >. }  =  { <. B ,  A >. }
43inteqi 3828 . . . . 5  |-  |^| `' { <. A ,  B >. }  =  |^| { <. B ,  A >. }
52, 1opex 4207 . . . . . 6  |-  <. B ,  A >.  e.  _V
65intsn 3859 . . . . 5  |-  |^| { <. B ,  A >. }  =  <. B ,  A >.
74, 6eqtri 2186 . . . 4  |-  |^| `' { <. A ,  B >. }  =  <. B ,  A >.
87inteqi 3828 . . 3  |-  |^| |^| `' { <. A ,  B >. }  =  |^| <. B ,  A >.
98inteqi 3828 . 2  |-  |^| |^| |^| `' { <. A ,  B >. }  =  |^| |^| <. B ,  A >.
102, 1op1stb 4456 . 2  |-  |^| |^| <. B ,  A >.  =  B
119, 10eqtri 2186 1  |-  |^| |^| |^| `' { <. A ,  B >. }  =  B
Colors of variables: wff set class
Syntax hints:    = wceq 1343    e. wcel 2136   _Vcvv 2726   {csn 3576   <.cop 3579   |^|cint 3824   `'ccnv 4603
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-int 3825  df-br 3983  df-opab 4044  df-xp 4610  df-rel 4611  df-cnv 4612
This theorem is referenced by:  2ndval2  6124
  Copyright terms: Public domain W3C validator