ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  op2ndb Unicode version

Theorem op2ndb 5094
Description: Extract the second member of an ordered pair. Theorem 5.12(ii) of [Monk1] p. 52. (See op1stb 4463 to extract the first member and op2nda 5095 for an alternate version.) (Contributed by NM, 25-Nov-2003.)
Hypotheses
Ref Expression
cnvsn.1  |-  A  e. 
_V
cnvsn.2  |-  B  e. 
_V
Assertion
Ref Expression
op2ndb  |-  |^| |^| |^| `' { <. A ,  B >. }  =  B

Proof of Theorem op2ndb
StepHypRef Expression
1 cnvsn.1 . . . . . . 7  |-  A  e. 
_V
2 cnvsn.2 . . . . . . 7  |-  B  e. 
_V
31, 2cnvsn 5093 . . . . . 6  |-  `' { <. A ,  B >. }  =  { <. B ,  A >. }
43inteqi 3835 . . . . 5  |-  |^| `' { <. A ,  B >. }  =  |^| { <. B ,  A >. }
52, 1opex 4214 . . . . . 6  |-  <. B ,  A >.  e.  _V
65intsn 3866 . . . . 5  |-  |^| { <. B ,  A >. }  =  <. B ,  A >.
74, 6eqtri 2191 . . . 4  |-  |^| `' { <. A ,  B >. }  =  <. B ,  A >.
87inteqi 3835 . . 3  |-  |^| |^| `' { <. A ,  B >. }  =  |^| <. B ,  A >.
98inteqi 3835 . 2  |-  |^| |^| |^| `' { <. A ,  B >. }  =  |^| |^| <. B ,  A >.
102, 1op1stb 4463 . 2  |-  |^| |^| <. B ,  A >.  =  B
119, 10eqtri 2191 1  |-  |^| |^| |^| `' { <. A ,  B >. }  =  B
Colors of variables: wff set class
Syntax hints:    = wceq 1348    e. wcel 2141   _Vcvv 2730   {csn 3583   <.cop 3586   |^|cint 3831   `'ccnv 4610
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-int 3832  df-br 3990  df-opab 4051  df-xp 4617  df-rel 4618  df-cnv 4619
This theorem is referenced by:  2ndval2  6135
  Copyright terms: Public domain W3C validator