| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > op2ndb | Unicode version | ||
| Description: Extract the second member of an ordered pair. Theorem 5.12(ii) of [Monk1] p. 52. (See op1stb 4538 to extract the first member and op2nda 5181 for an alternate version.) (Contributed by NM, 25-Nov-2003.) |
| Ref | Expression |
|---|---|
| cnvsn.1 |
|
| cnvsn.2 |
|
| Ref | Expression |
|---|---|
| op2ndb |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvsn.1 |
. . . . . . 7
| |
| 2 | cnvsn.2 |
. . . . . . 7
| |
| 3 | 1, 2 | cnvsn 5179 |
. . . . . 6
|
| 4 | 3 | inteqi 3898 |
. . . . 5
|
| 5 | 2, 1 | opex 4286 |
. . . . . 6
|
| 6 | 5 | intsn 3929 |
. . . . 5
|
| 7 | 4, 6 | eqtri 2227 |
. . . 4
|
| 8 | 7 | inteqi 3898 |
. . 3
|
| 9 | 8 | inteqi 3898 |
. 2
|
| 10 | 2, 1 | op1stb 4538 |
. 2
|
| 11 | 9, 10 | eqtri 2227 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4173 ax-pow 4229 ax-pr 4264 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-int 3895 df-br 4055 df-opab 4117 df-xp 4694 df-rel 4695 df-cnv 4696 |
| This theorem is referenced by: 2ndval2 6260 |
| Copyright terms: Public domain | W3C validator |