ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  op2ndb Unicode version

Theorem op2ndb 5211
Description: Extract the second member of an ordered pair. Theorem 5.12(ii) of [Monk1] p. 52. (See op1stb 4568 to extract the first member and op2nda 5212 for an alternate version.) (Contributed by NM, 25-Nov-2003.)
Hypotheses
Ref Expression
cnvsn.1  |-  A  e. 
_V
cnvsn.2  |-  B  e. 
_V
Assertion
Ref Expression
op2ndb  |-  |^| |^| |^| `' { <. A ,  B >. }  =  B

Proof of Theorem op2ndb
StepHypRef Expression
1 cnvsn.1 . . . . . . 7  |-  A  e. 
_V
2 cnvsn.2 . . . . . . 7  |-  B  e. 
_V
31, 2cnvsn 5210 . . . . . 6  |-  `' { <. A ,  B >. }  =  { <. B ,  A >. }
43inteqi 3926 . . . . 5  |-  |^| `' { <. A ,  B >. }  =  |^| { <. B ,  A >. }
52, 1opex 4314 . . . . . 6  |-  <. B ,  A >.  e.  _V
65intsn 3957 . . . . 5  |-  |^| { <. B ,  A >. }  =  <. B ,  A >.
74, 6eqtri 2250 . . . 4  |-  |^| `' { <. A ,  B >. }  =  <. B ,  A >.
87inteqi 3926 . . 3  |-  |^| |^| `' { <. A ,  B >. }  =  |^| <. B ,  A >.
98inteqi 3926 . 2  |-  |^| |^| |^| `' { <. A ,  B >. }  =  |^| |^| <. B ,  A >.
102, 1op1stb 4568 . 2  |-  |^| |^| <. B ,  A >.  =  B
119, 10eqtri 2250 1  |-  |^| |^| |^| `' { <. A ,  B >. }  =  B
Colors of variables: wff set class
Syntax hints:    = wceq 1395    e. wcel 2200   _Vcvv 2799   {csn 3666   <.cop 3669   |^|cint 3922   `'ccnv 4717
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-int 3923  df-br 4083  df-opab 4145  df-xp 4724  df-rel 4725  df-cnv 4726
This theorem is referenced by:  2ndval2  6300
  Copyright terms: Public domain W3C validator