ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  op2ndb Unicode version

Theorem op2ndb 5149
Description: Extract the second member of an ordered pair. Theorem 5.12(ii) of [Monk1] p. 52. (See op1stb 4509 to extract the first member and op2nda 5150 for an alternate version.) (Contributed by NM, 25-Nov-2003.)
Hypotheses
Ref Expression
cnvsn.1  |-  A  e. 
_V
cnvsn.2  |-  B  e. 
_V
Assertion
Ref Expression
op2ndb  |-  |^| |^| |^| `' { <. A ,  B >. }  =  B

Proof of Theorem op2ndb
StepHypRef Expression
1 cnvsn.1 . . . . . . 7  |-  A  e. 
_V
2 cnvsn.2 . . . . . . 7  |-  B  e. 
_V
31, 2cnvsn 5148 . . . . . 6  |-  `' { <. A ,  B >. }  =  { <. B ,  A >. }
43inteqi 3874 . . . . 5  |-  |^| `' { <. A ,  B >. }  =  |^| { <. B ,  A >. }
52, 1opex 4258 . . . . . 6  |-  <. B ,  A >.  e.  _V
65intsn 3905 . . . . 5  |-  |^| { <. B ,  A >. }  =  <. B ,  A >.
74, 6eqtri 2214 . . . 4  |-  |^| `' { <. A ,  B >. }  =  <. B ,  A >.
87inteqi 3874 . . 3  |-  |^| |^| `' { <. A ,  B >. }  =  |^| <. B ,  A >.
98inteqi 3874 . 2  |-  |^| |^| |^| `' { <. A ,  B >. }  =  |^| |^| <. B ,  A >.
102, 1op1stb 4509 . 2  |-  |^| |^| <. B ,  A >.  =  B
119, 10eqtri 2214 1  |-  |^| |^| |^| `' { <. A ,  B >. }  =  B
Colors of variables: wff set class
Syntax hints:    = wceq 1364    e. wcel 2164   _Vcvv 2760   {csn 3618   <.cop 3621   |^|cint 3870   `'ccnv 4658
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-int 3871  df-br 4030  df-opab 4091  df-xp 4665  df-rel 4666  df-cnv 4667
This theorem is referenced by:  2ndval2  6209
  Copyright terms: Public domain W3C validator