Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > intsn | GIF version |
Description: The intersection of a singleton is its member. Theorem 70 of [Suppes] p. 41. (Contributed by NM, 29-Sep-2002.) |
Ref | Expression |
---|---|
intsn.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
intsn | ⊢ ∩ {𝐴} = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intsn.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | intsng 3865 | . 2 ⊢ (𝐴 ∈ V → ∩ {𝐴} = 𝐴) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ∩ {𝐴} = 𝐴 |
Colors of variables: wff set class |
Syntax hints: = wceq 1348 ∈ wcel 2141 Vcvv 2730 {csn 3583 ∩ cint 3831 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-v 2732 df-un 3125 df-in 3127 df-sn 3589 df-pr 3590 df-int 3832 |
This theorem is referenced by: uniintsnr 3867 intunsn 3869 op1stb 4463 op2ndb 5094 ssfii 6951 |
Copyright terms: Public domain | W3C validator |