| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > intsn | GIF version | ||
| Description: The intersection of a singleton is its member. Theorem 70 of [Suppes] p. 41. (Contributed by NM, 29-Sep-2002.) |
| Ref | Expression |
|---|---|
| intsn.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| intsn | ⊢ ∩ {𝐴} = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intsn.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | intsng 3925 | . 2 ⊢ (𝐴 ∈ V → ∩ {𝐴} = 𝐴) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ∩ {𝐴} = 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∈ wcel 2177 Vcvv 2773 {csn 3638 ∩ cint 3891 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-v 2775 df-un 3174 df-in 3176 df-sn 3644 df-pr 3645 df-int 3892 |
| This theorem is referenced by: uniintsnr 3927 intunsn 3929 op1stb 4533 op2ndb 5175 ssfii 7091 |
| Copyright terms: Public domain | W3C validator |