ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssfii Unicode version

Theorem ssfii 7137
Description: Any element of a set  A is the intersection of a finite subset of  A. (Contributed by FL, 27-Apr-2008.) (Proof shortened by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
ssfii  |-  ( A  e.  V  ->  A  C_  ( fi `  A
) )

Proof of Theorem ssfii
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 vex 2802 . . . . 5  |-  x  e. 
_V
21intsn 3957 . . . 4  |-  |^| { x }  =  x
3 simpl 109 . . . . 5  |-  ( ( A  e.  V  /\  x  e.  A )  ->  A  e.  V )
4 simpr 110 . . . . . 6  |-  ( ( A  e.  V  /\  x  e.  A )  ->  x  e.  A )
54snssd 3812 . . . . 5  |-  ( ( A  e.  V  /\  x  e.  A )  ->  { x }  C_  A )
61snnz 3785 . . . . . 6  |-  { x }  =/=  (/)
76a1i 9 . . . . 5  |-  ( ( A  e.  V  /\  x  e.  A )  ->  { x }  =/=  (/) )
8 snfig 6965 . . . . . . 7  |-  ( x  e.  _V  ->  { x }  e.  Fin )
98elv 2803 . . . . . 6  |-  { x }  e.  Fin
109a1i 9 . . . . 5  |-  ( ( A  e.  V  /\  x  e.  A )  ->  { x }  e.  Fin )
11 elfir 7136 . . . . 5  |-  ( ( A  e.  V  /\  ( { x }  C_  A  /\  { x }  =/=  (/)  /\  { x }  e.  Fin )
)  ->  |^| { x }  e.  ( fi `  A ) )
123, 5, 7, 10, 11syl13anc 1273 . . . 4  |-  ( ( A  e.  V  /\  x  e.  A )  ->  |^| { x }  e.  ( fi `  A
) )
132, 12eqeltrrid 2317 . . 3  |-  ( ( A  e.  V  /\  x  e.  A )  ->  x  e.  ( fi
`  A ) )
1413ex 115 . 2  |-  ( A  e.  V  ->  (
x  e.  A  ->  x  e.  ( fi `  A ) ) )
1514ssrdv 3230 1  |-  ( A  e.  V  ->  A  C_  ( fi `  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2200    =/= wne 2400   _Vcvv 2799    C_ wss 3197   (/)c0 3491   {csn 3666   |^|cint 3922   ` cfv 5317   Fincfn 6885   ficfi 7131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-iinf 4679
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-1o 6560  df-er 6678  df-en 6886  df-fin 6888  df-fi 7132
This theorem is referenced by:  fieq0  7139  fiuni  7141
  Copyright terms: Public domain W3C validator