ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssfii Unicode version

Theorem ssfii 6870
Description: Any element of a set  A is the intersection of a finite subset of  A. (Contributed by FL, 27-Apr-2008.) (Proof shortened by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
ssfii  |-  ( A  e.  V  ->  A  C_  ( fi `  A
) )

Proof of Theorem ssfii
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 vex 2692 . . . . 5  |-  x  e. 
_V
21intsn 3814 . . . 4  |-  |^| { x }  =  x
3 simpl 108 . . . . 5  |-  ( ( A  e.  V  /\  x  e.  A )  ->  A  e.  V )
4 simpr 109 . . . . . 6  |-  ( ( A  e.  V  /\  x  e.  A )  ->  x  e.  A )
54snssd 3673 . . . . 5  |-  ( ( A  e.  V  /\  x  e.  A )  ->  { x }  C_  A )
61snnz 3650 . . . . . 6  |-  { x }  =/=  (/)
76a1i 9 . . . . 5  |-  ( ( A  e.  V  /\  x  e.  A )  ->  { x }  =/=  (/) )
8 snfig 6716 . . . . . . 7  |-  ( x  e.  _V  ->  { x }  e.  Fin )
98elv 2693 . . . . . 6  |-  { x }  e.  Fin
109a1i 9 . . . . 5  |-  ( ( A  e.  V  /\  x  e.  A )  ->  { x }  e.  Fin )
11 elfir 6869 . . . . 5  |-  ( ( A  e.  V  /\  ( { x }  C_  A  /\  { x }  =/=  (/)  /\  { x }  e.  Fin )
)  ->  |^| { x }  e.  ( fi `  A ) )
123, 5, 7, 10, 11syl13anc 1219 . . . 4  |-  ( ( A  e.  V  /\  x  e.  A )  ->  |^| { x }  e.  ( fi `  A
) )
132, 12eqeltrrid 2228 . . 3  |-  ( ( A  e.  V  /\  x  e.  A )  ->  x  e.  ( fi
`  A ) )
1413ex 114 . 2  |-  ( A  e.  V  ->  (
x  e.  A  ->  x  e.  ( fi `  A ) ) )
1514ssrdv 3108 1  |-  ( A  e.  V  ->  A  C_  ( fi `  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    e. wcel 1481    =/= wne 2309   _Vcvv 2689    C_ wss 3076   (/)c0 3368   {csn 3532   |^|cint 3779   ` cfv 5131   Fincfn 6642   ficfi 6864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-iinf 4510
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-1o 6321  df-er 6437  df-en 6643  df-fin 6645  df-fi 6865
This theorem is referenced by:  fieq0  6872  fiuni  6874
  Copyright terms: Public domain W3C validator