ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssfii Unicode version

Theorem ssfii 6951
Description: Any element of a set  A is the intersection of a finite subset of  A. (Contributed by FL, 27-Apr-2008.) (Proof shortened by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
ssfii  |-  ( A  e.  V  ->  A  C_  ( fi `  A
) )

Proof of Theorem ssfii
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 vex 2733 . . . . 5  |-  x  e. 
_V
21intsn 3866 . . . 4  |-  |^| { x }  =  x
3 simpl 108 . . . . 5  |-  ( ( A  e.  V  /\  x  e.  A )  ->  A  e.  V )
4 simpr 109 . . . . . 6  |-  ( ( A  e.  V  /\  x  e.  A )  ->  x  e.  A )
54snssd 3725 . . . . 5  |-  ( ( A  e.  V  /\  x  e.  A )  ->  { x }  C_  A )
61snnz 3702 . . . . . 6  |-  { x }  =/=  (/)
76a1i 9 . . . . 5  |-  ( ( A  e.  V  /\  x  e.  A )  ->  { x }  =/=  (/) )
8 snfig 6792 . . . . . . 7  |-  ( x  e.  _V  ->  { x }  e.  Fin )
98elv 2734 . . . . . 6  |-  { x }  e.  Fin
109a1i 9 . . . . 5  |-  ( ( A  e.  V  /\  x  e.  A )  ->  { x }  e.  Fin )
11 elfir 6950 . . . . 5  |-  ( ( A  e.  V  /\  ( { x }  C_  A  /\  { x }  =/=  (/)  /\  { x }  e.  Fin )
)  ->  |^| { x }  e.  ( fi `  A ) )
123, 5, 7, 10, 11syl13anc 1235 . . . 4  |-  ( ( A  e.  V  /\  x  e.  A )  ->  |^| { x }  e.  ( fi `  A
) )
132, 12eqeltrrid 2258 . . 3  |-  ( ( A  e.  V  /\  x  e.  A )  ->  x  e.  ( fi
`  A ) )
1413ex 114 . 2  |-  ( A  e.  V  ->  (
x  e.  A  ->  x  e.  ( fi `  A ) ) )
1514ssrdv 3153 1  |-  ( A  e.  V  ->  A  C_  ( fi `  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    e. wcel 2141    =/= wne 2340   _Vcvv 2730    C_ wss 3121   (/)c0 3414   {csn 3583   |^|cint 3831   ` cfv 5198   Fincfn 6718   ficfi 6945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-1o 6395  df-er 6513  df-en 6719  df-fin 6721  df-fi 6946
This theorem is referenced by:  fieq0  6953  fiuni  6955
  Copyright terms: Public domain W3C validator