ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  op1stb Unicode version

Theorem op1stb 4526
Description: Extract the first member of an ordered pair. Theorem 73 of [Suppes] p. 42. (Contributed by NM, 25-Nov-2003.)
Hypotheses
Ref Expression
op1stb.1  |-  A  e. 
_V
op1stb.2  |-  B  e. 
_V
Assertion
Ref Expression
op1stb  |-  |^| |^| <. A ,  B >.  =  A

Proof of Theorem op1stb
StepHypRef Expression
1 op1stb.1 . . . . . 6  |-  A  e. 
_V
2 op1stb.2 . . . . . 6  |-  B  e. 
_V
31, 2dfop 3818 . . . . 5  |-  <. A ,  B >.  =  { { A } ,  { A ,  B } }
43inteqi 3889 . . . 4  |-  |^| <. A ,  B >.  =  |^| { { A } ,  { A ,  B } }
51snex 4230 . . . . . 6  |-  { A }  e.  _V
6 prexg 4256 . . . . . . 7  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  { A ,  B }  e.  _V )
71, 2, 6mp2an 426 . . . . . 6  |-  { A ,  B }  e.  _V
85, 7intpr 3917 . . . . 5  |-  |^| { { A } ,  { A ,  B } }  =  ( { A }  i^i  { A ,  B }
)
9 snsspr1 3781 . . . . . 6  |-  { A }  C_  { A ,  B }
10 df-ss 3179 . . . . . 6  |-  ( { A }  C_  { A ,  B }  <->  ( { A }  i^i  { A ,  B } )  =  { A } )
119, 10mpbi 145 . . . . 5  |-  ( { A }  i^i  { A ,  B }
)  =  { A }
128, 11eqtri 2226 . . . 4  |-  |^| { { A } ,  { A ,  B } }  =  { A }
134, 12eqtri 2226 . . 3  |-  |^| <. A ,  B >.  =  { A }
1413inteqi 3889 . 2  |-  |^| |^| <. A ,  B >.  =  |^| { A }
151intsn 3920 . 2  |-  |^| { A }  =  A
1614, 15eqtri 2226 1  |-  |^| |^| <. A ,  B >.  =  A
Colors of variables: wff set class
Syntax hints:    = wceq 1373    e. wcel 2176   _Vcvv 2772    i^i cin 3165    C_ wss 3166   {csn 3633   {cpr 3634   <.cop 3636   |^|cint 3885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-int 3886
This theorem is referenced by:  elreldm  4905  op2ndb  5167  1stval2  6243  fundmen  6900  xpsnen  6918
  Copyright terms: Public domain W3C validator