ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  op1stb Unicode version

Theorem op1stb 4569
Description: Extract the first member of an ordered pair. Theorem 73 of [Suppes] p. 42. (Contributed by NM, 25-Nov-2003.)
Hypotheses
Ref Expression
op1stb.1  |-  A  e. 
_V
op1stb.2  |-  B  e. 
_V
Assertion
Ref Expression
op1stb  |-  |^| |^| <. A ,  B >.  =  A

Proof of Theorem op1stb
StepHypRef Expression
1 op1stb.1 . . . . . 6  |-  A  e. 
_V
2 op1stb.2 . . . . . 6  |-  B  e. 
_V
31, 2dfop 3856 . . . . 5  |-  <. A ,  B >.  =  { { A } ,  { A ,  B } }
43inteqi 3927 . . . 4  |-  |^| <. A ,  B >.  =  |^| { { A } ,  { A ,  B } }
51snex 4269 . . . . . 6  |-  { A }  e.  _V
6 prexg 4295 . . . . . . 7  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  { A ,  B }  e.  _V )
71, 2, 6mp2an 426 . . . . . 6  |-  { A ,  B }  e.  _V
85, 7intpr 3955 . . . . 5  |-  |^| { { A } ,  { A ,  B } }  =  ( { A }  i^i  { A ,  B }
)
9 snsspr1 3816 . . . . . 6  |-  { A }  C_  { A ,  B }
10 df-ss 3210 . . . . . 6  |-  ( { A }  C_  { A ,  B }  <->  ( { A }  i^i  { A ,  B } )  =  { A } )
119, 10mpbi 145 . . . . 5  |-  ( { A }  i^i  { A ,  B }
)  =  { A }
128, 11eqtri 2250 . . . 4  |-  |^| { { A } ,  { A ,  B } }  =  { A }
134, 12eqtri 2250 . . 3  |-  |^| <. A ,  B >.  =  { A }
1413inteqi 3927 . 2  |-  |^| |^| <. A ,  B >.  =  |^| { A }
151intsn 3958 . 2  |-  |^| { A }  =  A
1614, 15eqtri 2250 1  |-  |^| |^| <. A ,  B >.  =  A
Colors of variables: wff set class
Syntax hints:    = wceq 1395    e. wcel 2200   _Vcvv 2799    i^i cin 3196    C_ wss 3197   {csn 3666   {cpr 3667   <.cop 3669   |^|cint 3923
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-int 3924
This theorem is referenced by:  elreldm  4950  op2ndb  5212  1stval2  6301  fundmen  6959  xpsnen  6980
  Copyright terms: Public domain W3C validator