ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  op1stb Unicode version

Theorem op1stb 4509
Description: Extract the first member of an ordered pair. Theorem 73 of [Suppes] p. 42. (Contributed by NM, 25-Nov-2003.)
Hypotheses
Ref Expression
op1stb.1  |-  A  e. 
_V
op1stb.2  |-  B  e. 
_V
Assertion
Ref Expression
op1stb  |-  |^| |^| <. A ,  B >.  =  A

Proof of Theorem op1stb
StepHypRef Expression
1 op1stb.1 . . . . . 6  |-  A  e. 
_V
2 op1stb.2 . . . . . 6  |-  B  e. 
_V
31, 2dfop 3803 . . . . 5  |-  <. A ,  B >.  =  { { A } ,  { A ,  B } }
43inteqi 3874 . . . 4  |-  |^| <. A ,  B >.  =  |^| { { A } ,  { A ,  B } }
51snex 4214 . . . . . 6  |-  { A }  e.  _V
6 prexg 4240 . . . . . . 7  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  { A ,  B }  e.  _V )
71, 2, 6mp2an 426 . . . . . 6  |-  { A ,  B }  e.  _V
85, 7intpr 3902 . . . . 5  |-  |^| { { A } ,  { A ,  B } }  =  ( { A }  i^i  { A ,  B }
)
9 snsspr1 3766 . . . . . 6  |-  { A }  C_  { A ,  B }
10 df-ss 3166 . . . . . 6  |-  ( { A }  C_  { A ,  B }  <->  ( { A }  i^i  { A ,  B } )  =  { A } )
119, 10mpbi 145 . . . . 5  |-  ( { A }  i^i  { A ,  B }
)  =  { A }
128, 11eqtri 2214 . . . 4  |-  |^| { { A } ,  { A ,  B } }  =  { A }
134, 12eqtri 2214 . . 3  |-  |^| <. A ,  B >.  =  { A }
1413inteqi 3874 . 2  |-  |^| |^| <. A ,  B >.  =  |^| { A }
151intsn 3905 . 2  |-  |^| { A }  =  A
1614, 15eqtri 2214 1  |-  |^| |^| <. A ,  B >.  =  A
Colors of variables: wff set class
Syntax hints:    = wceq 1364    e. wcel 2164   _Vcvv 2760    i^i cin 3152    C_ wss 3153   {csn 3618   {cpr 3619   <.cop 3621   |^|cint 3870
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-int 3871
This theorem is referenced by:  elreldm  4888  op2ndb  5149  1stval2  6208  fundmen  6860  xpsnen  6875
  Copyright terms: Public domain W3C validator