ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  op1stb Unicode version

Theorem op1stb 4472
Description: Extract the first member of an ordered pair. Theorem 73 of [Suppes] p. 42. (Contributed by NM, 25-Nov-2003.)
Hypotheses
Ref Expression
op1stb.1  |-  A  e. 
_V
op1stb.2  |-  B  e. 
_V
Assertion
Ref Expression
op1stb  |-  |^| |^| <. A ,  B >.  =  A

Proof of Theorem op1stb
StepHypRef Expression
1 op1stb.1 . . . . . 6  |-  A  e. 
_V
2 op1stb.2 . . . . . 6  |-  B  e. 
_V
31, 2dfop 3773 . . . . 5  |-  <. A ,  B >.  =  { { A } ,  { A ,  B } }
43inteqi 3844 . . . 4  |-  |^| <. A ,  B >.  =  |^| { { A } ,  { A ,  B } }
51snex 4180 . . . . . 6  |-  { A }  e.  _V
6 prexg 4205 . . . . . . 7  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  { A ,  B }  e.  _V )
71, 2, 6mp2an 426 . . . . . 6  |-  { A ,  B }  e.  _V
85, 7intpr 3872 . . . . 5  |-  |^| { { A } ,  { A ,  B } }  =  ( { A }  i^i  { A ,  B }
)
9 snsspr1 3737 . . . . . 6  |-  { A }  C_  { A ,  B }
10 df-ss 3140 . . . . . 6  |-  ( { A }  C_  { A ,  B }  <->  ( { A }  i^i  { A ,  B } )  =  { A } )
119, 10mpbi 145 . . . . 5  |-  ( { A }  i^i  { A ,  B }
)  =  { A }
128, 11eqtri 2196 . . . 4  |-  |^| { { A } ,  { A ,  B } }  =  { A }
134, 12eqtri 2196 . . 3  |-  |^| <. A ,  B >.  =  { A }
1413inteqi 3844 . 2  |-  |^| |^| <. A ,  B >.  =  |^| { A }
151intsn 3875 . 2  |-  |^| { A }  =  A
1614, 15eqtri 2196 1  |-  |^| |^| <. A ,  B >.  =  A
Colors of variables: wff set class
Syntax hints:    = wceq 1353    e. wcel 2146   _Vcvv 2735    i^i cin 3126    C_ wss 3127   {csn 3589   {cpr 3590   <.cop 3592   |^|cint 3840
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-v 2737  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-int 3841
This theorem is referenced by:  elreldm  4846  op2ndb  5104  1stval2  6146  fundmen  6796  xpsnen  6811
  Copyright terms: Public domain W3C validator