ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  op1stb Unicode version

Theorem op1stb 4337
Description: Extract the first member of an ordered pair. Theorem 73 of [Suppes] p. 42. (Contributed by NM, 25-Nov-2003.)
Hypotheses
Ref Expression
op1stb.1  |-  A  e. 
_V
op1stb.2  |-  B  e. 
_V
Assertion
Ref Expression
op1stb  |-  |^| |^| <. A ,  B >.  =  A

Proof of Theorem op1stb
StepHypRef Expression
1 op1stb.1 . . . . . 6  |-  A  e. 
_V
2 op1stb.2 . . . . . 6  |-  B  e. 
_V
31, 2dfop 3651 . . . . 5  |-  <. A ,  B >.  =  { { A } ,  { A ,  B } }
43inteqi 3722 . . . 4  |-  |^| <. A ,  B >.  =  |^| { { A } ,  { A ,  B } }
51snex 4049 . . . . . 6  |-  { A }  e.  _V
6 prexg 4071 . . . . . . 7  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  { A ,  B }  e.  _V )
71, 2, 6mp2an 420 . . . . . 6  |-  { A ,  B }  e.  _V
85, 7intpr 3750 . . . . 5  |-  |^| { { A } ,  { A ,  B } }  =  ( { A }  i^i  { A ,  B }
)
9 snsspr1 3615 . . . . . 6  |-  { A }  C_  { A ,  B }
10 df-ss 3034 . . . . . 6  |-  ( { A }  C_  { A ,  B }  <->  ( { A }  i^i  { A ,  B } )  =  { A } )
119, 10mpbi 144 . . . . 5  |-  ( { A }  i^i  { A ,  B }
)  =  { A }
128, 11eqtri 2120 . . . 4  |-  |^| { { A } ,  { A ,  B } }  =  { A }
134, 12eqtri 2120 . . 3  |-  |^| <. A ,  B >.  =  { A }
1413inteqi 3722 . 2  |-  |^| |^| <. A ,  B >.  =  |^| { A }
151intsn 3753 . 2  |-  |^| { A }  =  A
1614, 15eqtri 2120 1  |-  |^| |^| <. A ,  B >.  =  A
Colors of variables: wff set class
Syntax hints:    = wceq 1299    e. wcel 1448   _Vcvv 2641    i^i cin 3020    C_ wss 3021   {csn 3474   {cpr 3475   <.cop 3477   |^|cint 3718
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-sep 3986  ax-pow 4038  ax-pr 4069
This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-nf 1405  df-sb 1704  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ral 2380  df-v 2643  df-un 3025  df-in 3027  df-ss 3034  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-int 3719
This theorem is referenced by:  elreldm  4703  op2ndb  4958  1stval2  5984  fundmen  6630  xpsnen  6644
  Copyright terms: Public domain W3C validator