ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intsng Unicode version

Theorem intsng 3880
Description: Intersection of a singleton. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Assertion
Ref Expression
intsng  |-  ( A  e.  V  ->  |^| { A }  =  A )

Proof of Theorem intsng
StepHypRef Expression
1 dfsn2 3608 . . 3  |-  { A }  =  { A ,  A }
21inteqi 3850 . 2  |-  |^| { A }  =  |^| { A ,  A }
3 intprg 3879 . . . 4  |-  ( ( A  e.  V  /\  A  e.  V )  ->  |^| { A ,  A }  =  ( A  i^i  A ) )
43anidms 397 . . 3  |-  ( A  e.  V  ->  |^| { A ,  A }  =  ( A  i^i  A ) )
5 inidm 3346 . . 3  |-  ( A  i^i  A )  =  A
64, 5eqtrdi 2226 . 2  |-  ( A  e.  V  ->  |^| { A ,  A }  =  A )
72, 6eqtrid 2222 1  |-  ( A  e.  V  ->  |^| { A }  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353    e. wcel 2148    i^i cin 3130   {csn 3594   {cpr 3595   |^|cint 3846
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-v 2741  df-un 3135  df-in 3137  df-sn 3600  df-pr 3601  df-int 3847
This theorem is referenced by:  intsn  3881  op1stbg  4481  riinint  4890
  Copyright terms: Public domain W3C validator