ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intsng Unicode version

Theorem intsng 3908
Description: Intersection of a singleton. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Assertion
Ref Expression
intsng  |-  ( A  e.  V  ->  |^| { A }  =  A )

Proof of Theorem intsng
StepHypRef Expression
1 dfsn2 3636 . . 3  |-  { A }  =  { A ,  A }
21inteqi 3878 . 2  |-  |^| { A }  =  |^| { A ,  A }
3 intprg 3907 . . . 4  |-  ( ( A  e.  V  /\  A  e.  V )  ->  |^| { A ,  A }  =  ( A  i^i  A ) )
43anidms 397 . . 3  |-  ( A  e.  V  ->  |^| { A ,  A }  =  ( A  i^i  A ) )
5 inidm 3372 . . 3  |-  ( A  i^i  A )  =  A
64, 5eqtrdi 2245 . 2  |-  ( A  e.  V  ->  |^| { A ,  A }  =  A )
72, 6eqtrid 2241 1  |-  ( A  e.  V  ->  |^| { A }  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2167    i^i cin 3156   {csn 3622   {cpr 3623   |^|cint 3874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-v 2765  df-un 3161  df-in 3163  df-sn 3628  df-pr 3629  df-int 3875
This theorem is referenced by:  intsn  3909  op1stbg  4514  riinint  4927
  Copyright terms: Public domain W3C validator