ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intsng Unicode version

Theorem intsng 3904
Description: Intersection of a singleton. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Assertion
Ref Expression
intsng  |-  ( A  e.  V  ->  |^| { A }  =  A )

Proof of Theorem intsng
StepHypRef Expression
1 dfsn2 3632 . . 3  |-  { A }  =  { A ,  A }
21inteqi 3874 . 2  |-  |^| { A }  =  |^| { A ,  A }
3 intprg 3903 . . . 4  |-  ( ( A  e.  V  /\  A  e.  V )  ->  |^| { A ,  A }  =  ( A  i^i  A ) )
43anidms 397 . . 3  |-  ( A  e.  V  ->  |^| { A ,  A }  =  ( A  i^i  A ) )
5 inidm 3368 . . 3  |-  ( A  i^i  A )  =  A
64, 5eqtrdi 2242 . 2  |-  ( A  e.  V  ->  |^| { A ,  A }  =  A )
72, 6eqtrid 2238 1  |-  ( A  e.  V  ->  |^| { A }  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2164    i^i cin 3152   {csn 3618   {cpr 3619   |^|cint 3870
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-v 2762  df-un 3157  df-in 3159  df-sn 3624  df-pr 3625  df-int 3871
This theorem is referenced by:  intsn  3905  op1stbg  4510  riinint  4923
  Copyright terms: Public domain W3C validator