Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > intsng | Unicode version |
Description: Intersection of a singleton. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
Ref | Expression |
---|---|
intsng |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsn2 3597 | . . 3 | |
2 | 1 | inteqi 3835 | . 2 |
3 | intprg 3864 | . . . 4 | |
4 | 3 | anidms 395 | . . 3 |
5 | inidm 3336 | . . 3 | |
6 | 4, 5 | eqtrdi 2219 | . 2 |
7 | 2, 6 | eqtrid 2215 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1348 wcel 2141 cin 3120 csn 3583 cpr 3584 cint 3831 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-v 2732 df-un 3125 df-in 3127 df-sn 3589 df-pr 3590 df-int 3832 |
This theorem is referenced by: intsn 3866 op1stbg 4464 riinint 4872 |
Copyright terms: Public domain | W3C validator |