ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intsng Unicode version

Theorem intsng 3771
Description: Intersection of a singleton. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Assertion
Ref Expression
intsng  |-  ( A  e.  V  ->  |^| { A }  =  A )

Proof of Theorem intsng
StepHypRef Expression
1 dfsn2 3507 . . 3  |-  { A }  =  { A ,  A }
21inteqi 3741 . 2  |-  |^| { A }  =  |^| { A ,  A }
3 intprg 3770 . . . 4  |-  ( ( A  e.  V  /\  A  e.  V )  ->  |^| { A ,  A }  =  ( A  i^i  A ) )
43anidms 392 . . 3  |-  ( A  e.  V  ->  |^| { A ,  A }  =  ( A  i^i  A ) )
5 inidm 3251 . . 3  |-  ( A  i^i  A )  =  A
64, 5syl6eq 2163 . 2  |-  ( A  e.  V  ->  |^| { A ,  A }  =  A )
72, 6syl5eq 2159 1  |-  ( A  e.  V  ->  |^| { A }  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1314    e. wcel 1463    i^i cin 3036   {csn 3493   {cpr 3494   |^|cint 3737
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097
This theorem depends on definitions:  df-bi 116  df-tru 1317  df-nf 1420  df-sb 1719  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ral 2395  df-v 2659  df-un 3041  df-in 3043  df-sn 3499  df-pr 3500  df-int 3738
This theorem is referenced by:  intsn  3772  op1stbg  4360  riinint  4758
  Copyright terms: Public domain W3C validator