ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intsng Unicode version

Theorem intsng 3858
Description: Intersection of a singleton. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Assertion
Ref Expression
intsng  |-  ( A  e.  V  ->  |^| { A }  =  A )

Proof of Theorem intsng
StepHypRef Expression
1 dfsn2 3590 . . 3  |-  { A }  =  { A ,  A }
21inteqi 3828 . 2  |-  |^| { A }  =  |^| { A ,  A }
3 intprg 3857 . . . 4  |-  ( ( A  e.  V  /\  A  e.  V )  ->  |^| { A ,  A }  =  ( A  i^i  A ) )
43anidms 395 . . 3  |-  ( A  e.  V  ->  |^| { A ,  A }  =  ( A  i^i  A ) )
5 inidm 3331 . . 3  |-  ( A  i^i  A )  =  A
64, 5eqtrdi 2215 . 2  |-  ( A  e.  V  ->  |^| { A ,  A }  =  A )
72, 6syl5eq 2211 1  |-  ( A  e.  V  ->  |^| { A }  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343    e. wcel 2136    i^i cin 3115   {csn 3576   {cpr 3577   |^|cint 3824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-v 2728  df-un 3120  df-in 3122  df-sn 3582  df-pr 3583  df-int 3825
This theorem is referenced by:  intsn  3859  op1stbg  4457  riinint  4865
  Copyright terms: Public domain W3C validator