ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uniintsnr Unicode version

Theorem uniintsnr 3746
Description: The union and intersection of a singleton are equal. See also eusn 3536. (Contributed by Jim Kingdon, 14-Aug-2018.)
Assertion
Ref Expression
uniintsnr  |-  ( E. x  A  =  {
x }  ->  U. A  =  |^| A )
Distinct variable group:    x, A

Proof of Theorem uniintsnr
StepHypRef Expression
1 vex 2636 . . . 4  |-  x  e. 
_V
21unisn 3691 . . 3  |-  U. {
x }  =  x
3 unieq 3684 . . 3  |-  ( A  =  { x }  ->  U. A  =  U. { x } )
4 inteq 3713 . . . 4  |-  ( A  =  { x }  ->  |^| A  =  |^| { x } )
51intsn 3745 . . . 4  |-  |^| { x }  =  x
64, 5syl6eq 2143 . . 3  |-  ( A  =  { x }  ->  |^| A  =  x )
72, 3, 63eqtr4a 2153 . 2  |-  ( A  =  { x }  ->  U. A  =  |^| A )
87exlimiv 1541 1  |-  ( E. x  A  =  {
x }  ->  U. A  =  |^| A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1296   E.wex 1433   {csn 3466   U.cuni 3675   |^|cint 3710
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077
This theorem depends on definitions:  df-bi 116  df-tru 1299  df-nf 1402  df-sb 1700  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ral 2375  df-rex 2376  df-v 2635  df-un 3017  df-in 3019  df-sn 3472  df-pr 3473  df-uni 3676  df-int 3711
This theorem is referenced by:  uniintabim  3747
  Copyright terms: Public domain W3C validator