ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uniintsnr Unicode version

Theorem uniintsnr 3906
Description: The union and intersection of a singleton are equal. See also eusn 3692. (Contributed by Jim Kingdon, 14-Aug-2018.)
Assertion
Ref Expression
uniintsnr  |-  ( E. x  A  =  {
x }  ->  U. A  =  |^| A )
Distinct variable group:    x, A

Proof of Theorem uniintsnr
StepHypRef Expression
1 vex 2763 . . . 4  |-  x  e. 
_V
21unisn 3851 . . 3  |-  U. {
x }  =  x
3 unieq 3844 . . 3  |-  ( A  =  { x }  ->  U. A  =  U. { x } )
4 inteq 3873 . . . 4  |-  ( A  =  { x }  ->  |^| A  =  |^| { x } )
51intsn 3905 . . . 4  |-  |^| { x }  =  x
64, 5eqtrdi 2242 . . 3  |-  ( A  =  { x }  ->  |^| A  =  x )
72, 3, 63eqtr4a 2252 . 2  |-  ( A  =  { x }  ->  U. A  =  |^| A )
87exlimiv 1609 1  |-  ( E. x  A  =  {
x }  ->  U. A  =  |^| A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364   E.wex 1503   {csn 3618   U.cuni 3835   |^|cint 3870
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-sn 3624  df-pr 3625  df-uni 3836  df-int 3871
This theorem is referenced by:  uniintabim  3907
  Copyright terms: Public domain W3C validator