ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uniintsnr Unicode version

Theorem uniintsnr 3921
Description: The union and intersection of a singleton are equal. See also eusn 3707. (Contributed by Jim Kingdon, 14-Aug-2018.)
Assertion
Ref Expression
uniintsnr  |-  ( E. x  A  =  {
x }  ->  U. A  =  |^| A )
Distinct variable group:    x, A

Proof of Theorem uniintsnr
StepHypRef Expression
1 vex 2775 . . . 4  |-  x  e. 
_V
21unisn 3866 . . 3  |-  U. {
x }  =  x
3 unieq 3859 . . 3  |-  ( A  =  { x }  ->  U. A  =  U. { x } )
4 inteq 3888 . . . 4  |-  ( A  =  { x }  ->  |^| A  =  |^| { x } )
51intsn 3920 . . . 4  |-  |^| { x }  =  x
64, 5eqtrdi 2254 . . 3  |-  ( A  =  { x }  ->  |^| A  =  x )
72, 3, 63eqtr4a 2264 . 2  |-  ( A  =  { x }  ->  U. A  =  |^| A )
87exlimiv 1621 1  |-  ( E. x  A  =  {
x }  ->  U. A  =  |^| A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373   E.wex 1515   {csn 3633   U.cuni 3850   |^|cint 3885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-sn 3639  df-pr 3640  df-uni 3851  df-int 3886
This theorem is referenced by:  uniintabim  3922
  Copyright terms: Public domain W3C validator