![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > uniintsnr | Unicode version |
Description: The union and intersection of a singleton are equal. See also eusn 3536. (Contributed by Jim Kingdon, 14-Aug-2018.) |
Ref | Expression |
---|---|
uniintsnr |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2636 |
. . . 4
![]() ![]() ![]() ![]() | |
2 | 1 | unisn 3691 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | unieq 3684 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | inteq 3713 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 1 | intsn 3745 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | 4, 5 | syl6eq 2143 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | 2, 3, 6 | 3eqtr4a 2153 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | 7 | exlimiv 1541 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 |
This theorem depends on definitions: df-bi 116 df-tru 1299 df-nf 1402 df-sb 1700 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-ral 2375 df-rex 2376 df-v 2635 df-un 3017 df-in 3019 df-sn 3472 df-pr 3473 df-uni 3676 df-int 3711 |
This theorem is referenced by: uniintabim 3747 |
Copyright terms: Public domain | W3C validator |