ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uniintsnr Unicode version

Theorem uniintsnr 3910
Description: The union and intersection of a singleton are equal. See also eusn 3696. (Contributed by Jim Kingdon, 14-Aug-2018.)
Assertion
Ref Expression
uniintsnr  |-  ( E. x  A  =  {
x }  ->  U. A  =  |^| A )
Distinct variable group:    x, A

Proof of Theorem uniintsnr
StepHypRef Expression
1 vex 2766 . . . 4  |-  x  e. 
_V
21unisn 3855 . . 3  |-  U. {
x }  =  x
3 unieq 3848 . . 3  |-  ( A  =  { x }  ->  U. A  =  U. { x } )
4 inteq 3877 . . . 4  |-  ( A  =  { x }  ->  |^| A  =  |^| { x } )
51intsn 3909 . . . 4  |-  |^| { x }  =  x
64, 5eqtrdi 2245 . . 3  |-  ( A  =  { x }  ->  |^| A  =  x )
72, 3, 63eqtr4a 2255 . 2  |-  ( A  =  { x }  ->  U. A  =  |^| A )
87exlimiv 1612 1  |-  ( E. x  A  =  {
x }  ->  U. A  =  |^| A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364   E.wex 1506   {csn 3622   U.cuni 3839   |^|cint 3874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-sn 3628  df-pr 3629  df-uni 3840  df-int 3875
This theorem is referenced by:  uniintabim  3911
  Copyright terms: Public domain W3C validator