ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intss Unicode version

Theorem intss 3943
Description: Intersection of subclasses. (Contributed by NM, 14-Oct-1999.)
Assertion
Ref Expression
intss  |-  ( A 
C_  B  ->  |^| B  C_ 
|^| A )

Proof of Theorem intss
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imim1 76 . . . . 5  |-  ( ( y  e.  A  -> 
y  e.  B )  ->  ( ( y  e.  B  ->  x  e.  y )  ->  (
y  e.  A  ->  x  e.  y )
) )
21al2imi 1504 . . . 4  |-  ( A. y ( y  e.  A  ->  y  e.  B )  ->  ( A. y ( y  e.  B  ->  x  e.  y )  ->  A. y
( y  e.  A  ->  x  e.  y ) ) )
3 vex 2802 . . . . 5  |-  x  e. 
_V
43elint 3928 . . . 4  |-  ( x  e.  |^| B  <->  A. y
( y  e.  B  ->  x  e.  y ) )
53elint 3928 . . . 4  |-  ( x  e.  |^| A  <->  A. y
( y  e.  A  ->  x  e.  y ) )
62, 4, 53imtr4g 205 . . 3  |-  ( A. y ( y  e.  A  ->  y  e.  B )  ->  (
x  e.  |^| B  ->  x  e.  |^| A
) )
76alrimiv 1920 . 2  |-  ( A. y ( y  e.  A  ->  y  e.  B )  ->  A. x
( x  e.  |^| B  ->  x  e.  |^| A ) )
8 ssalel 3212 . 2  |-  ( A 
C_  B  <->  A. y
( y  e.  A  ->  y  e.  B ) )
9 ssalel 3212 . 2  |-  ( |^| B  C_  |^| A  <->  A. x
( x  e.  |^| B  ->  x  e.  |^| A ) )
107, 8, 93imtr4i 201 1  |-  ( A 
C_  B  ->  |^| B  C_ 
|^| A )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1393    e. wcel 2200    C_ wss 3197   |^|cint 3922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-in 3203  df-ss 3210  df-int 3923
This theorem is referenced by:  lspss  14357  clsss  14786
  Copyright terms: Public domain W3C validator