| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > intssunim | Unicode version | ||
| Description: The intersection of an inhabited set is a subclass of its union. (Contributed by NM, 29-Jul-2006.) |
| Ref | Expression |
|---|---|
| intssunim |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.2m 3546 |
. . . 4
| |
| 2 | 1 | ex 115 |
. . 3
|
| 3 | vex 2774 |
. . . 4
| |
| 4 | 3 | elint2 3891 |
. . 3
|
| 5 | eluni2 3853 |
. . 3
| |
| 6 | 2, 4, 5 | 3imtr4g 205 |
. 2
|
| 7 | 6 | ssrdv 3198 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-in 3171 df-ss 3178 df-uni 3850 df-int 3885 |
| This theorem is referenced by: intssuni2m 3908 subgintm 13476 |
| Copyright terms: Public domain | W3C validator |