ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intssunim Unicode version

Theorem intssunim 3881
Description: The intersection of an inhabited set is a subclass of its union. (Contributed by NM, 29-Jul-2006.)
Assertion
Ref Expression
intssunim  |-  ( E. x  x  e.  A  ->  |^| A  C_  U. A
)
Distinct variable group:    x, A

Proof of Theorem intssunim
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 r19.2m 3524 . . . 4  |-  ( ( E. x  x  e.  A  /\  A. x  e.  A  y  e.  x )  ->  E. x  e.  A  y  e.  x )
21ex 115 . . 3  |-  ( E. x  x  e.  A  ->  ( A. x  e.  A  y  e.  x  ->  E. x  e.  A  y  e.  x )
)
3 vex 2755 . . . 4  |-  y  e. 
_V
43elint2 3866 . . 3  |-  ( y  e.  |^| A  <->  A. x  e.  A  y  e.  x )
5 eluni2 3828 . . 3  |-  ( y  e.  U. A  <->  E. x  e.  A  y  e.  x )
62, 4, 53imtr4g 205 . 2  |-  ( E. x  x  e.  A  ->  ( y  e.  |^| A  ->  y  e.  U. A ) )
76ssrdv 3176 1  |-  ( E. x  x  e.  A  ->  |^| A  C_  U. A
)
Colors of variables: wff set class
Syntax hints:    -> wi 4   E.wex 1503    e. wcel 2160   A.wral 2468   E.wrex 2469    C_ wss 3144   U.cuni 3824   |^|cint 3859
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-v 2754  df-in 3150  df-ss 3157  df-uni 3825  df-int 3860
This theorem is referenced by:  intssuni2m  3883  subgintm  13154
  Copyright terms: Public domain W3C validator