Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > intssunim | Unicode version |
Description: The intersection of an inhabited set is a subclass of its union. (Contributed by NM, 29-Jul-2006.) |
Ref | Expression |
---|---|
intssunim |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.2m 3507 | . . . 4 | |
2 | 1 | ex 115 | . . 3 |
3 | vex 2738 | . . . 4 | |
4 | 3 | elint2 3847 | . . 3 |
5 | eluni2 3809 | . . 3 | |
6 | 2, 4, 5 | 3imtr4g 205 | . 2 |
7 | 6 | ssrdv 3159 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wex 1490 wcel 2146 wral 2453 wrex 2454 wss 3127 cuni 3805 cint 3840 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-in 3133 df-ss 3140 df-uni 3806 df-int 3841 |
This theorem is referenced by: intssuni2m 3864 |
Copyright terms: Public domain | W3C validator |