ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elint Unicode version

Theorem elint 3864
Description: Membership in class intersection. (Contributed by NM, 21-May-1994.)
Hypothesis
Ref Expression
elint.1  |-  A  e. 
_V
Assertion
Ref Expression
elint  |-  ( A  e.  |^| B  <->  A. x
( x  e.  B  ->  A  e.  x ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem elint
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 elint.1 . 2  |-  A  e. 
_V
2 eleq1 2251 . . . 4  |-  ( y  =  A  ->  (
y  e.  x  <->  A  e.  x ) )
32imbi2d 230 . . 3  |-  ( y  =  A  ->  (
( x  e.  B  ->  y  e.  x )  <-> 
( x  e.  B  ->  A  e.  x ) ) )
43albidv 1834 . 2  |-  ( y  =  A  ->  ( A. x ( x  e.  B  ->  y  e.  x )  <->  A. x
( x  e.  B  ->  A  e.  x ) ) )
5 df-int 3859 . 2  |-  |^| B  =  { y  |  A. x ( x  e.  B  ->  y  e.  x ) }
61, 4, 5elab2 2899 1  |-  ( A  e.  |^| B  <->  A. x
( x  e.  B  ->  A  e.  x ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1361    = wceq 1363    e. wcel 2159   _Vcvv 2751   |^|cint 3858
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2170
This theorem depends on definitions:  df-bi 117  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2175  df-cleq 2181  df-clel 2184  df-nfc 2320  df-v 2753  df-int 3859
This theorem is referenced by:  elint2  3865  elintab  3869  intss1  3873  intss  3879  intun  3889  intpr  3890  peano1  4607
  Copyright terms: Public domain W3C validator