ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  clsss Unicode version

Theorem clsss 14590
Description: Subset relationship for closure. (Contributed by NM, 10-Feb-2007.)
Hypothesis
Ref Expression
clscld.1  |-  X  = 
U. J
Assertion
Ref Expression
clsss  |-  ( ( J  e.  Top  /\  S  C_  X  /\  T  C_  S )  ->  (
( cls `  J
) `  T )  C_  ( ( cls `  J
) `  S )
)

Proof of Theorem clsss
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 sstr2 3200 . . . . . 6  |-  ( T 
C_  S  ->  ( S  C_  x  ->  T  C_  x ) )
21adantr 276 . . . . 5  |-  ( ( T  C_  S  /\  x  e.  ( Clsd `  J ) )  -> 
( S  C_  x  ->  T  C_  x )
)
32ss2rabdv 3274 . . . 4  |-  ( T 
C_  S  ->  { x  e.  ( Clsd `  J
)  |  S  C_  x }  C_  { x  e.  ( Clsd `  J
)  |  T  C_  x } )
4 intss 3906 . . . 4  |-  ( { x  e.  ( Clsd `  J )  |  S  C_  x }  C_  { x  e.  ( Clsd `  J
)  |  T  C_  x }  ->  |^| { x  e.  ( Clsd `  J
)  |  T  C_  x }  C_  |^| { x  e.  ( Clsd `  J
)  |  S  C_  x } )
53, 4syl 14 . . 3  |-  ( T 
C_  S  ->  |^| { x  e.  ( Clsd `  J
)  |  T  C_  x }  C_  |^| { x  e.  ( Clsd `  J
)  |  S  C_  x } )
653ad2ant3 1023 . 2  |-  ( ( J  e.  Top  /\  S  C_  X  /\  T  C_  S )  ->  |^| { x  e.  ( Clsd `  J
)  |  T  C_  x }  C_  |^| { x  e.  ( Clsd `  J
)  |  S  C_  x } )
7 simp1 1000 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X  /\  T  C_  S )  ->  J  e.  Top )
8 sstr2 3200 . . . . 5  |-  ( T 
C_  S  ->  ( S  C_  X  ->  T  C_  X ) )
98impcom 125 . . . 4  |-  ( ( S  C_  X  /\  T  C_  S )  ->  T  C_  X )
1093adant1 1018 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X  /\  T  C_  S )  ->  T  C_  X )
11 clscld.1 . . . 4  |-  X  = 
U. J
1211clsval 14583 . . 3  |-  ( ( J  e.  Top  /\  T  C_  X )  -> 
( ( cls `  J
) `  T )  =  |^| { x  e.  ( Clsd `  J
)  |  T  C_  x } )
137, 10, 12syl2anc 411 . 2  |-  ( ( J  e.  Top  /\  S  C_  X  /\  T  C_  S )  ->  (
( cls `  J
) `  T )  =  |^| { x  e.  ( Clsd `  J
)  |  T  C_  x } )
1411clsval 14583 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( cls `  J
) `  S )  =  |^| { x  e.  ( Clsd `  J
)  |  S  C_  x } )
15143adant3 1020 . 2  |-  ( ( J  e.  Top  /\  S  C_  X  /\  T  C_  S )  ->  (
( cls `  J
) `  S )  =  |^| { x  e.  ( Clsd `  J
)  |  S  C_  x } )
166, 13, 153sstr4d 3238 1  |-  ( ( J  e.  Top  /\  S  C_  X  /\  T  C_  S )  ->  (
( cls `  J
) `  T )  C_  ( ( cls `  J
) `  S )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 981    = wceq 1373    e. wcel 2176   {crab 2488    C_ wss 3166   U.cuni 3850   |^|cint 3885   ` cfv 5271   Topctop 14469   Clsdccld 14564   clsccl 14566
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-top 14470  df-cld 14567  df-cls 14569
This theorem is referenced by:  clsss2  14601
  Copyright terms: Public domain W3C validator