ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  clsss Unicode version

Theorem clsss 14354
Description: Subset relationship for closure. (Contributed by NM, 10-Feb-2007.)
Hypothesis
Ref Expression
clscld.1  |-  X  = 
U. J
Assertion
Ref Expression
clsss  |-  ( ( J  e.  Top  /\  S  C_  X  /\  T  C_  S )  ->  (
( cls `  J
) `  T )  C_  ( ( cls `  J
) `  S )
)

Proof of Theorem clsss
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 sstr2 3190 . . . . . 6  |-  ( T 
C_  S  ->  ( S  C_  x  ->  T  C_  x ) )
21adantr 276 . . . . 5  |-  ( ( T  C_  S  /\  x  e.  ( Clsd `  J ) )  -> 
( S  C_  x  ->  T  C_  x )
)
32ss2rabdv 3264 . . . 4  |-  ( T 
C_  S  ->  { x  e.  ( Clsd `  J
)  |  S  C_  x }  C_  { x  e.  ( Clsd `  J
)  |  T  C_  x } )
4 intss 3895 . . . 4  |-  ( { x  e.  ( Clsd `  J )  |  S  C_  x }  C_  { x  e.  ( Clsd `  J
)  |  T  C_  x }  ->  |^| { x  e.  ( Clsd `  J
)  |  T  C_  x }  C_  |^| { x  e.  ( Clsd `  J
)  |  S  C_  x } )
53, 4syl 14 . . 3  |-  ( T 
C_  S  ->  |^| { x  e.  ( Clsd `  J
)  |  T  C_  x }  C_  |^| { x  e.  ( Clsd `  J
)  |  S  C_  x } )
653ad2ant3 1022 . 2  |-  ( ( J  e.  Top  /\  S  C_  X  /\  T  C_  S )  ->  |^| { x  e.  ( Clsd `  J
)  |  T  C_  x }  C_  |^| { x  e.  ( Clsd `  J
)  |  S  C_  x } )
7 simp1 999 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X  /\  T  C_  S )  ->  J  e.  Top )
8 sstr2 3190 . . . . 5  |-  ( T 
C_  S  ->  ( S  C_  X  ->  T  C_  X ) )
98impcom 125 . . . 4  |-  ( ( S  C_  X  /\  T  C_  S )  ->  T  C_  X )
1093adant1 1017 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X  /\  T  C_  S )  ->  T  C_  X )
11 clscld.1 . . . 4  |-  X  = 
U. J
1211clsval 14347 . . 3  |-  ( ( J  e.  Top  /\  T  C_  X )  -> 
( ( cls `  J
) `  T )  =  |^| { x  e.  ( Clsd `  J
)  |  T  C_  x } )
137, 10, 12syl2anc 411 . 2  |-  ( ( J  e.  Top  /\  S  C_  X  /\  T  C_  S )  ->  (
( cls `  J
) `  T )  =  |^| { x  e.  ( Clsd `  J
)  |  T  C_  x } )
1411clsval 14347 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( cls `  J
) `  S )  =  |^| { x  e.  ( Clsd `  J
)  |  S  C_  x } )
15143adant3 1019 . 2  |-  ( ( J  e.  Top  /\  S  C_  X  /\  T  C_  S )  ->  (
( cls `  J
) `  S )  =  |^| { x  e.  ( Clsd `  J
)  |  S  C_  x } )
166, 13, 153sstr4d 3228 1  |-  ( ( J  e.  Top  /\  S  C_  X  /\  T  C_  S )  ->  (
( cls `  J
) `  T )  C_  ( ( cls `  J
) `  S )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 980    = wceq 1364    e. wcel 2167   {crab 2479    C_ wss 3157   U.cuni 3839   |^|cint 3874   ` cfv 5258   Topctop 14233   Clsdccld 14328   clsccl 14330
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-top 14234  df-cld 14331  df-cls 14333
This theorem is referenced by:  clsss2  14365
  Copyright terms: Public domain W3C validator