| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > intunsn | GIF version | ||
| Description: Theorem joining a singleton to an intersection. (Contributed by NM, 29-Sep-2002.) |
| Ref | Expression |
|---|---|
| intunsn.1 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| intunsn | ⊢ ∩ (𝐴 ∪ {𝐵}) = (∩ 𝐴 ∩ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intun 3933 | . 2 ⊢ ∩ (𝐴 ∪ {𝐵}) = (∩ 𝐴 ∩ ∩ {𝐵}) | |
| 2 | intunsn.1 | . . . 4 ⊢ 𝐵 ∈ V | |
| 3 | 2 | intsn 3937 | . . 3 ⊢ ∩ {𝐵} = 𝐵 |
| 4 | 3 | ineq2i 3382 | . 2 ⊢ (∩ 𝐴 ∩ ∩ {𝐵}) = (∩ 𝐴 ∩ 𝐵) |
| 5 | 1, 4 | eqtri 2230 | 1 ⊢ ∩ (𝐴 ∪ {𝐵}) = (∩ 𝐴 ∩ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1375 ∈ wcel 2180 Vcvv 2779 ∪ cun 3175 ∩ cin 3176 {csn 3646 ∩ cint 3902 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-v 2781 df-un 3181 df-in 3183 df-sn 3652 df-pr 3653 df-int 3903 |
| This theorem is referenced by: fiintim 7061 |
| Copyright terms: Public domain | W3C validator |