ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intunsn GIF version

Theorem intunsn 3869
Description: Theorem joining a singleton to an intersection. (Contributed by NM, 29-Sep-2002.)
Hypothesis
Ref Expression
intunsn.1 𝐵 ∈ V
Assertion
Ref Expression
intunsn (𝐴 ∪ {𝐵}) = ( 𝐴𝐵)

Proof of Theorem intunsn
StepHypRef Expression
1 intun 3862 . 2 (𝐴 ∪ {𝐵}) = ( 𝐴 {𝐵})
2 intunsn.1 . . . 4 𝐵 ∈ V
32intsn 3866 . . 3 {𝐵} = 𝐵
43ineq2i 3325 . 2 ( 𝐴 {𝐵}) = ( 𝐴𝐵)
51, 4eqtri 2191 1 (𝐴 ∪ {𝐵}) = ( 𝐴𝐵)
Colors of variables: wff set class
Syntax hints:   = wceq 1348  wcel 2141  Vcvv 2730  cun 3119  cin 3120  {csn 3583   cint 3831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-v 2732  df-un 3125  df-in 3127  df-sn 3589  df-pr 3590  df-int 3832
This theorem is referenced by:  fiintim  6906
  Copyright terms: Public domain W3C validator