![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > intunsn | GIF version |
Description: Theorem joining a singleton to an intersection. (Contributed by NM, 29-Sep-2002.) |
Ref | Expression |
---|---|
intunsn.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
intunsn | ⊢ ∩ (𝐴 ∪ {𝐵}) = (∩ 𝐴 ∩ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intun 3901 | . 2 ⊢ ∩ (𝐴 ∪ {𝐵}) = (∩ 𝐴 ∩ ∩ {𝐵}) | |
2 | intunsn.1 | . . . 4 ⊢ 𝐵 ∈ V | |
3 | 2 | intsn 3905 | . . 3 ⊢ ∩ {𝐵} = 𝐵 |
4 | 3 | ineq2i 3357 | . 2 ⊢ (∩ 𝐴 ∩ ∩ {𝐵}) = (∩ 𝐴 ∩ 𝐵) |
5 | 1, 4 | eqtri 2214 | 1 ⊢ ∩ (𝐴 ∪ {𝐵}) = (∩ 𝐴 ∩ 𝐵) |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 ∈ wcel 2164 Vcvv 2760 ∪ cun 3151 ∩ cin 3152 {csn 3618 ∩ cint 3870 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-v 2762 df-un 3157 df-in 3159 df-sn 3624 df-pr 3625 df-int 3871 |
This theorem is referenced by: fiintim 6985 |
Copyright terms: Public domain | W3C validator |