| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > intunsn | GIF version | ||
| Description: Theorem joining a singleton to an intersection. (Contributed by NM, 29-Sep-2002.) |
| Ref | Expression |
|---|---|
| intunsn.1 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| intunsn | ⊢ ∩ (𝐴 ∪ {𝐵}) = (∩ 𝐴 ∩ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intun 3918 | . 2 ⊢ ∩ (𝐴 ∪ {𝐵}) = (∩ 𝐴 ∩ ∩ {𝐵}) | |
| 2 | intunsn.1 | . . . 4 ⊢ 𝐵 ∈ V | |
| 3 | 2 | intsn 3922 | . . 3 ⊢ ∩ {𝐵} = 𝐵 |
| 4 | 3 | ineq2i 3372 | . 2 ⊢ (∩ 𝐴 ∩ ∩ {𝐵}) = (∩ 𝐴 ∩ 𝐵) |
| 5 | 1, 4 | eqtri 2227 | 1 ⊢ ∩ (𝐴 ∪ {𝐵}) = (∩ 𝐴 ∩ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∈ wcel 2177 Vcvv 2773 ∪ cun 3165 ∩ cin 3166 {csn 3634 ∩ cint 3887 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-v 2775 df-un 3171 df-in 3173 df-sn 3640 df-pr 3641 df-int 3888 |
| This theorem is referenced by: fiintim 7035 |
| Copyright terms: Public domain | W3C validator |