ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intunsn GIF version

Theorem intunsn 3912
Description: Theorem joining a singleton to an intersection. (Contributed by NM, 29-Sep-2002.)
Hypothesis
Ref Expression
intunsn.1 𝐵 ∈ V
Assertion
Ref Expression
intunsn (𝐴 ∪ {𝐵}) = ( 𝐴𝐵)

Proof of Theorem intunsn
StepHypRef Expression
1 intun 3905 . 2 (𝐴 ∪ {𝐵}) = ( 𝐴 {𝐵})
2 intunsn.1 . . . 4 𝐵 ∈ V
32intsn 3909 . . 3 {𝐵} = 𝐵
43ineq2i 3361 . 2 ( 𝐴 {𝐵}) = ( 𝐴𝐵)
51, 4eqtri 2217 1 (𝐴 ∪ {𝐵}) = ( 𝐴𝐵)
Colors of variables: wff set class
Syntax hints:   = wceq 1364  wcel 2167  Vcvv 2763  cun 3155  cin 3156  {csn 3622   cint 3874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-v 2765  df-un 3161  df-in 3163  df-sn 3628  df-pr 3629  df-int 3875
This theorem is referenced by:  fiintim  6992
  Copyright terms: Public domain W3C validator