ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intunsn GIF version

Theorem intunsn 3861
Description: Theorem joining a singleton to an intersection. (Contributed by NM, 29-Sep-2002.)
Hypothesis
Ref Expression
intunsn.1 𝐵 ∈ V
Assertion
Ref Expression
intunsn (𝐴 ∪ {𝐵}) = ( 𝐴𝐵)

Proof of Theorem intunsn
StepHypRef Expression
1 intun 3854 . 2 (𝐴 ∪ {𝐵}) = ( 𝐴 {𝐵})
2 intunsn.1 . . . 4 𝐵 ∈ V
32intsn 3858 . . 3 {𝐵} = 𝐵
43ineq2i 3319 . 2 ( 𝐴 {𝐵}) = ( 𝐴𝐵)
51, 4eqtri 2186 1 (𝐴 ∪ {𝐵}) = ( 𝐴𝐵)
Colors of variables: wff set class
Syntax hints:   = wceq 1343  wcel 2136  Vcvv 2725  cun 3113  cin 3114  {csn 3575   cint 3823
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ral 2448  df-v 2727  df-un 3119  df-in 3121  df-sn 3581  df-pr 3582  df-int 3824
This theorem is referenced by:  fiintim  6890
  Copyright terms: Public domain W3C validator