ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uniintabim Unicode version

Theorem uniintabim 3866
Description: The union and the intersection of a class abstraction are equal if there is a unique satisfying value of  ph ( x ). (Contributed by Jim Kingdon, 14-Aug-2018.)
Assertion
Ref Expression
uniintabim  |-  ( E! x ph  ->  U. {
x  |  ph }  =  |^| { x  | 
ph } )

Proof of Theorem uniintabim
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 euabsn2 3650 . 2  |-  ( E! x ph  <->  E. y { x  |  ph }  =  { y } )
2 uniintsnr 3865 . 2  |-  ( E. y { x  | 
ph }  =  {
y }  ->  U. {
x  |  ph }  =  |^| { x  | 
ph } )
31, 2sylbi 120 1  |-  ( E! x ph  ->  U. {
x  |  ph }  =  |^| { x  | 
ph } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1348   E.wex 1485   E!weu 2019   {cab 2156   {csn 3581   U.cuni 3794   |^|cint 3829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-sn 3587  df-pr 3588  df-uni 3795  df-int 3830
This theorem is referenced by:  iotaint  5171
  Copyright terms: Public domain W3C validator