ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uniintabim Unicode version

Theorem uniintabim 3921
Description: The union and the intersection of a class abstraction are equal if there is a unique satisfying value of  ph ( x ). (Contributed by Jim Kingdon, 14-Aug-2018.)
Assertion
Ref Expression
uniintabim  |-  ( E! x ph  ->  U. {
x  |  ph }  =  |^| { x  | 
ph } )

Proof of Theorem uniintabim
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 euabsn2 3701 . 2  |-  ( E! x ph  <->  E. y { x  |  ph }  =  { y } )
2 uniintsnr 3920 . 2  |-  ( E. y { x  | 
ph }  =  {
y }  ->  U. {
x  |  ph }  =  |^| { x  | 
ph } )
31, 2sylbi 121 1  |-  ( E! x ph  ->  U. {
x  |  ph }  =  |^| { x  | 
ph } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1372   E.wex 1514   E!weu 2053   {cab 2190   {csn 3632   U.cuni 3849   |^|cint 3884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-un 3169  df-in 3171  df-sn 3638  df-pr 3639  df-uni 3850  df-int 3885
This theorem is referenced by:  iotaint  5244
  Copyright terms: Public domain W3C validator