| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eroprf | Unicode version | ||
| Description: Functionality of an operation defined on equivalence classes. (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Mario Carneiro, 30-Dec-2014.) |
| Ref | Expression |
|---|---|
| eropr.1 |
|
| eropr.2 |
|
| eropr.3 |
|
| eropr.4 |
|
| eropr.5 |
|
| eropr.6 |
|
| eropr.7 |
|
| eropr.8 |
|
| eropr.9 |
|
| eropr.10 |
|
| eropr.11 |
|
| eropr.12 |
|
| eropr.13 |
|
| eropr.14 |
|
| eropr.15 |
|
| Ref | Expression |
|---|---|
| eroprf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eropr.3 |
. . . . . . . . . . . 12
| |
| 2 | 1 | ad2antrr 488 |
. . . . . . . . . . 11
|
| 3 | eropr.10 |
. . . . . . . . . . . . 13
| |
| 4 | 3 | adantr 276 |
. . . . . . . . . . . 12
|
| 5 | 4 | fovcdmda 6149 |
. . . . . . . . . . 11
|
| 6 | ecelqsg 6735 |
. . . . . . . . . . 11
| |
| 7 | 2, 5, 6 | syl2anc 411 |
. . . . . . . . . 10
|
| 8 | eropr.15 |
. . . . . . . . . 10
| |
| 9 | 7, 8 | eleqtrrdi 2323 |
. . . . . . . . 9
|
| 10 | eleq1a 2301 |
. . . . . . . . 9
| |
| 11 | 9, 10 | syl 14 |
. . . . . . . 8
|
| 12 | 11 | adantld 278 |
. . . . . . 7
|
| 13 | 12 | rexlimdvva 2656 |
. . . . . 6
|
| 14 | 13 | abssdv 3298 |
. . . . 5
|
| 15 | eropr.1 |
. . . . . . 7
| |
| 16 | eropr.2 |
. . . . . . 7
| |
| 17 | eropr.4 |
. . . . . . 7
| |
| 18 | eropr.5 |
. . . . . . 7
| |
| 19 | eropr.6 |
. . . . . . 7
| |
| 20 | eropr.7 |
. . . . . . 7
| |
| 21 | eropr.8 |
. . . . . . 7
| |
| 22 | eropr.9 |
. . . . . . 7
| |
| 23 | eropr.11 |
. . . . . . 7
| |
| 24 | 15, 16, 1, 17, 18, 19, 20, 21, 22, 3, 23 | eroveu 6773 |
. . . . . 6
|
| 25 | iotacl 5303 |
. . . . . 6
| |
| 26 | 24, 25 | syl 14 |
. . . . 5
|
| 27 | 14, 26 | sseldd 3225 |
. . . 4
|
| 28 | 27 | ralrimivva 2612 |
. . 3
|
| 29 | eqid 2229 |
. . . 4
| |
| 30 | 29 | fmpo 6347 |
. . 3
|
| 31 | 28, 30 | sylib 122 |
. 2
|
| 32 | eropr.12 |
. . . 4
| |
| 33 | 15, 16, 1, 17, 18, 19, 20, 21, 22, 3, 23, 32 | erovlem 6774 |
. . 3
|
| 34 | 33 | feq1d 5460 |
. 2
|
| 35 | 31, 34 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fv 5326 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-er 6680 df-ec 6682 df-qs 6686 |
| This theorem is referenced by: eroprf2 6776 |
| Copyright terms: Public domain | W3C validator |