| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eroprf | Unicode version | ||
| Description: Functionality of an operation defined on equivalence classes. (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Mario Carneiro, 30-Dec-2014.) |
| Ref | Expression |
|---|---|
| eropr.1 |
|
| eropr.2 |
|
| eropr.3 |
|
| eropr.4 |
|
| eropr.5 |
|
| eropr.6 |
|
| eropr.7 |
|
| eropr.8 |
|
| eropr.9 |
|
| eropr.10 |
|
| eropr.11 |
|
| eropr.12 |
|
| eropr.13 |
|
| eropr.14 |
|
| eropr.15 |
|
| Ref | Expression |
|---|---|
| eroprf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eropr.3 |
. . . . . . . . . . . 12
| |
| 2 | 1 | ad2antrr 488 |
. . . . . . . . . . 11
|
| 3 | eropr.10 |
. . . . . . . . . . . . 13
| |
| 4 | 3 | adantr 276 |
. . . . . . . . . . . 12
|
| 5 | 4 | fovcdmda 6067 |
. . . . . . . . . . 11
|
| 6 | ecelqsg 6647 |
. . . . . . . . . . 11
| |
| 7 | 2, 5, 6 | syl2anc 411 |
. . . . . . . . . 10
|
| 8 | eropr.15 |
. . . . . . . . . 10
| |
| 9 | 7, 8 | eleqtrrdi 2290 |
. . . . . . . . 9
|
| 10 | eleq1a 2268 |
. . . . . . . . 9
| |
| 11 | 9, 10 | syl 14 |
. . . . . . . 8
|
| 12 | 11 | adantld 278 |
. . . . . . 7
|
| 13 | 12 | rexlimdvva 2622 |
. . . . . 6
|
| 14 | 13 | abssdv 3257 |
. . . . 5
|
| 15 | eropr.1 |
. . . . . . 7
| |
| 16 | eropr.2 |
. . . . . . 7
| |
| 17 | eropr.4 |
. . . . . . 7
| |
| 18 | eropr.5 |
. . . . . . 7
| |
| 19 | eropr.6 |
. . . . . . 7
| |
| 20 | eropr.7 |
. . . . . . 7
| |
| 21 | eropr.8 |
. . . . . . 7
| |
| 22 | eropr.9 |
. . . . . . 7
| |
| 23 | eropr.11 |
. . . . . . 7
| |
| 24 | 15, 16, 1, 17, 18, 19, 20, 21, 22, 3, 23 | eroveu 6685 |
. . . . . 6
|
| 25 | iotacl 5243 |
. . . . . 6
| |
| 26 | 24, 25 | syl 14 |
. . . . 5
|
| 27 | 14, 26 | sseldd 3184 |
. . . 4
|
| 28 | 27 | ralrimivva 2579 |
. . 3
|
| 29 | eqid 2196 |
. . . 4
| |
| 30 | 29 | fmpo 6259 |
. . 3
|
| 31 | 28, 30 | sylib 122 |
. 2
|
| 32 | eropr.12 |
. . . 4
| |
| 33 | 15, 16, 1, 17, 18, 19, 20, 21, 22, 3, 23, 32 | erovlem 6686 |
. . 3
|
| 34 | 33 | feq1d 5394 |
. 2
|
| 35 | 31, 34 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-er 6592 df-ec 6594 df-qs 6598 |
| This theorem is referenced by: eroprf2 6688 |
| Copyright terms: Public domain | W3C validator |