| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eroprf | Unicode version | ||
| Description: Functionality of an operation defined on equivalence classes. (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Mario Carneiro, 30-Dec-2014.) |
| Ref | Expression |
|---|---|
| eropr.1 |
|
| eropr.2 |
|
| eropr.3 |
|
| eropr.4 |
|
| eropr.5 |
|
| eropr.6 |
|
| eropr.7 |
|
| eropr.8 |
|
| eropr.9 |
|
| eropr.10 |
|
| eropr.11 |
|
| eropr.12 |
|
| eropr.13 |
|
| eropr.14 |
|
| eropr.15 |
|
| Ref | Expression |
|---|---|
| eroprf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eropr.3 |
. . . . . . . . . . . 12
| |
| 2 | 1 | ad2antrr 488 |
. . . . . . . . . . 11
|
| 3 | eropr.10 |
. . . . . . . . . . . . 13
| |
| 4 | 3 | adantr 276 |
. . . . . . . . . . . 12
|
| 5 | 4 | fovcdmda 6092 |
. . . . . . . . . . 11
|
| 6 | ecelqsg 6677 |
. . . . . . . . . . 11
| |
| 7 | 2, 5, 6 | syl2anc 411 |
. . . . . . . . . 10
|
| 8 | eropr.15 |
. . . . . . . . . 10
| |
| 9 | 7, 8 | eleqtrrdi 2299 |
. . . . . . . . 9
|
| 10 | eleq1a 2277 |
. . . . . . . . 9
| |
| 11 | 9, 10 | syl 14 |
. . . . . . . 8
|
| 12 | 11 | adantld 278 |
. . . . . . 7
|
| 13 | 12 | rexlimdvva 2631 |
. . . . . 6
|
| 14 | 13 | abssdv 3267 |
. . . . 5
|
| 15 | eropr.1 |
. . . . . . 7
| |
| 16 | eropr.2 |
. . . . . . 7
| |
| 17 | eropr.4 |
. . . . . . 7
| |
| 18 | eropr.5 |
. . . . . . 7
| |
| 19 | eropr.6 |
. . . . . . 7
| |
| 20 | eropr.7 |
. . . . . . 7
| |
| 21 | eropr.8 |
. . . . . . 7
| |
| 22 | eropr.9 |
. . . . . . 7
| |
| 23 | eropr.11 |
. . . . . . 7
| |
| 24 | 15, 16, 1, 17, 18, 19, 20, 21, 22, 3, 23 | eroveu 6715 |
. . . . . 6
|
| 25 | iotacl 5257 |
. . . . . 6
| |
| 26 | 24, 25 | syl 14 |
. . . . 5
|
| 27 | 14, 26 | sseldd 3194 |
. . . 4
|
| 28 | 27 | ralrimivva 2588 |
. . 3
|
| 29 | eqid 2205 |
. . . 4
| |
| 30 | 29 | fmpo 6289 |
. . 3
|
| 31 | 28, 30 | sylib 122 |
. 2
|
| 32 | eropr.12 |
. . . 4
| |
| 33 | 15, 16, 1, 17, 18, 19, 20, 21, 22, 3, 23, 32 | erovlem 6716 |
. . 3
|
| 34 | 33 | feq1d 5414 |
. 2
|
| 35 | 31, 34 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-iun 3929 df-br 4046 df-opab 4107 df-mpt 4108 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-fv 5280 df-ov 5949 df-oprab 5950 df-mpo 5951 df-1st 6228 df-2nd 6229 df-er 6622 df-ec 6624 df-qs 6628 |
| This theorem is referenced by: eroprf2 6718 |
| Copyright terms: Public domain | W3C validator |