| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eroprf | Unicode version | ||
| Description: Functionality of an operation defined on equivalence classes. (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Mario Carneiro, 30-Dec-2014.) |
| Ref | Expression |
|---|---|
| eropr.1 |
|
| eropr.2 |
|
| eropr.3 |
|
| eropr.4 |
|
| eropr.5 |
|
| eropr.6 |
|
| eropr.7 |
|
| eropr.8 |
|
| eropr.9 |
|
| eropr.10 |
|
| eropr.11 |
|
| eropr.12 |
|
| eropr.13 |
|
| eropr.14 |
|
| eropr.15 |
|
| Ref | Expression |
|---|---|
| eroprf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eropr.3 |
. . . . . . . . . . . 12
| |
| 2 | 1 | ad2antrr 488 |
. . . . . . . . . . 11
|
| 3 | eropr.10 |
. . . . . . . . . . . . 13
| |
| 4 | 3 | adantr 276 |
. . . . . . . . . . . 12
|
| 5 | 4 | fovcdmda 6113 |
. . . . . . . . . . 11
|
| 6 | ecelqsg 6698 |
. . . . . . . . . . 11
| |
| 7 | 2, 5, 6 | syl2anc 411 |
. . . . . . . . . 10
|
| 8 | eropr.15 |
. . . . . . . . . 10
| |
| 9 | 7, 8 | eleqtrrdi 2301 |
. . . . . . . . 9
|
| 10 | eleq1a 2279 |
. . . . . . . . 9
| |
| 11 | 9, 10 | syl 14 |
. . . . . . . 8
|
| 12 | 11 | adantld 278 |
. . . . . . 7
|
| 13 | 12 | rexlimdvva 2633 |
. . . . . 6
|
| 14 | 13 | abssdv 3275 |
. . . . 5
|
| 15 | eropr.1 |
. . . . . . 7
| |
| 16 | eropr.2 |
. . . . . . 7
| |
| 17 | eropr.4 |
. . . . . . 7
| |
| 18 | eropr.5 |
. . . . . . 7
| |
| 19 | eropr.6 |
. . . . . . 7
| |
| 20 | eropr.7 |
. . . . . . 7
| |
| 21 | eropr.8 |
. . . . . . 7
| |
| 22 | eropr.9 |
. . . . . . 7
| |
| 23 | eropr.11 |
. . . . . . 7
| |
| 24 | 15, 16, 1, 17, 18, 19, 20, 21, 22, 3, 23 | eroveu 6736 |
. . . . . 6
|
| 25 | iotacl 5275 |
. . . . . 6
| |
| 26 | 24, 25 | syl 14 |
. . . . 5
|
| 27 | 14, 26 | sseldd 3202 |
. . . 4
|
| 28 | 27 | ralrimivva 2590 |
. . 3
|
| 29 | eqid 2207 |
. . . 4
| |
| 30 | 29 | fmpo 6310 |
. . 3
|
| 31 | 28, 30 | sylib 122 |
. 2
|
| 32 | eropr.12 |
. . . 4
| |
| 33 | 15, 16, 1, 17, 18, 19, 20, 21, 22, 3, 23, 32 | erovlem 6737 |
. . 3
|
| 34 | 33 | feq1d 5432 |
. 2
|
| 35 | 31, 34 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-er 6643 df-ec 6645 df-qs 6649 |
| This theorem is referenced by: eroprf2 6739 |
| Copyright terms: Public domain | W3C validator |