Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eroprf | Unicode version |
Description: Functionality of an operation defined on equivalence classes. (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Mario Carneiro, 30-Dec-2014.) |
Ref | Expression |
---|---|
eropr.1 | |
eropr.2 | |
eropr.3 | |
eropr.4 | |
eropr.5 | |
eropr.6 | |
eropr.7 | |
eropr.8 | |
eropr.9 | |
eropr.10 | |
eropr.11 | |
eropr.12 | |
eropr.13 | |
eropr.14 | |
eropr.15 |
Ref | Expression |
---|---|
eroprf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eropr.3 | . . . . . . . . . . . 12 | |
2 | 1 | ad2antrr 480 | . . . . . . . . . . 11 |
3 | eropr.10 | . . . . . . . . . . . . 13 | |
4 | 3 | adantr 274 | . . . . . . . . . . . 12 |
5 | 4 | fovrnda 5985 | . . . . . . . . . . 11 |
6 | ecelqsg 6554 | . . . . . . . . . . 11 | |
7 | 2, 5, 6 | syl2anc 409 | . . . . . . . . . 10 |
8 | eropr.15 | . . . . . . . . . 10 | |
9 | 7, 8 | eleqtrrdi 2260 | . . . . . . . . 9 |
10 | eleq1a 2238 | . . . . . . . . 9 | |
11 | 9, 10 | syl 14 | . . . . . . . 8 |
12 | 11 | adantld 276 | . . . . . . 7 |
13 | 12 | rexlimdvva 2591 | . . . . . 6 |
14 | 13 | abssdv 3216 | . . . . 5 |
15 | eropr.1 | . . . . . . 7 | |
16 | eropr.2 | . . . . . . 7 | |
17 | eropr.4 | . . . . . . 7 | |
18 | eropr.5 | . . . . . . 7 | |
19 | eropr.6 | . . . . . . 7 | |
20 | eropr.7 | . . . . . . 7 | |
21 | eropr.8 | . . . . . . 7 | |
22 | eropr.9 | . . . . . . 7 | |
23 | eropr.11 | . . . . . . 7 | |
24 | 15, 16, 1, 17, 18, 19, 20, 21, 22, 3, 23 | eroveu 6592 | . . . . . 6 |
25 | iotacl 5176 | . . . . . 6 | |
26 | 24, 25 | syl 14 | . . . . 5 |
27 | 14, 26 | sseldd 3143 | . . . 4 |
28 | 27 | ralrimivva 2548 | . . 3 |
29 | eqid 2165 | . . . 4 | |
30 | 29 | fmpo 6169 | . . 3 |
31 | 28, 30 | sylib 121 | . 2 |
32 | eropr.12 | . . . 4 | |
33 | 15, 16, 1, 17, 18, 19, 20, 21, 22, 3, 23, 32 | erovlem 6593 | . . 3 |
34 | 33 | feq1d 5324 | . 2 |
35 | 31, 34 | mpbird 166 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 weu 2014 wcel 2136 cab 2151 wral 2444 wrex 2445 wss 3116 class class class wbr 3982 cxp 4602 cio 5151 wf 5184 (class class class)co 5842 coprab 5843 cmpo 5844 wer 6498 cec 6499 cqs 6500 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-er 6501 df-ec 6503 df-qs 6507 |
This theorem is referenced by: eroprf2 6595 |
Copyright terms: Public domain | W3C validator |