ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iotacl GIF version

Theorem iotacl 5303
Description: Membership law for descriptions.

This can useful for expanding an unbounded iota-based definition (see df-iota 5278).

(Contributed by Andrew Salmon, 1-Aug-2011.)

Assertion
Ref Expression
iotacl (∃!𝑥𝜑 → (℩𝑥𝜑) ∈ {𝑥𝜑})

Proof of Theorem iotacl
StepHypRef Expression
1 iota4 5298 . 2 (∃!𝑥𝜑[(℩𝑥𝜑) / 𝑥]𝜑)
2 df-sbc 3029 . 2 ([(℩𝑥𝜑) / 𝑥]𝜑 ↔ (℩𝑥𝜑) ∈ {𝑥𝜑})
31, 2sylib 122 1 (∃!𝑥𝜑 → (℩𝑥𝜑) ∈ {𝑥𝜑})
Colors of variables: wff set class
Syntax hints:  wi 4  ∃!weu 2077  wcel 2200  {cab 2215  [wsbc 3028  cio 5276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-sn 3672  df-pr 3673  df-uni 3889  df-iota 5278
This theorem is referenced by:  riotacl2  5975  eroprf  6783
  Copyright terms: Public domain W3C validator