ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iotacl GIF version

Theorem iotacl 5261
Description: Membership law for descriptions.

This can useful for expanding an unbounded iota-based definition (see df-iota 5237).

(Contributed by Andrew Salmon, 1-Aug-2011.)

Assertion
Ref Expression
iotacl (∃!𝑥𝜑 → (℩𝑥𝜑) ∈ {𝑥𝜑})

Proof of Theorem iotacl
StepHypRef Expression
1 iota4 5256 . 2 (∃!𝑥𝜑[(℩𝑥𝜑) / 𝑥]𝜑)
2 df-sbc 3000 . 2 ([(℩𝑥𝜑) / 𝑥]𝜑 ↔ (℩𝑥𝜑) ∈ {𝑥𝜑})
31, 2sylib 122 1 (∃!𝑥𝜑 → (℩𝑥𝜑) ∈ {𝑥𝜑})
Colors of variables: wff set class
Syntax hints:  wi 4  ∃!weu 2055  wcel 2177  {cab 2192  [wsbc 2999  cio 5235
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-rex 2491  df-v 2775  df-sbc 3000  df-un 3171  df-sn 3640  df-pr 3641  df-uni 3853  df-iota 5237
This theorem is referenced by:  riotacl2  5920  eroprf  6722
  Copyright terms: Public domain W3C validator