| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iotacl | GIF version | ||
| Description: Membership law for
descriptions.
This can useful for expanding an unbounded iota-based definition (see df-iota 5254). (Contributed by Andrew Salmon, 1-Aug-2011.) |
| Ref | Expression |
|---|---|
| iotacl | ⊢ (∃!𝑥𝜑 → (℩𝑥𝜑) ∈ {𝑥 ∣ 𝜑}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iota4 5274 | . 2 ⊢ (∃!𝑥𝜑 → [(℩𝑥𝜑) / 𝑥]𝜑) | |
| 2 | df-sbc 3009 | . 2 ⊢ ([(℩𝑥𝜑) / 𝑥]𝜑 ↔ (℩𝑥𝜑) ∈ {𝑥 ∣ 𝜑}) | |
| 3 | 1, 2 | sylib 122 | 1 ⊢ (∃!𝑥𝜑 → (℩𝑥𝜑) ∈ {𝑥 ∣ 𝜑}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∃!weu 2057 ∈ wcel 2180 {cab 2195 [wsbc 3008 ℩cio 5252 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-tru 1378 df-nf 1487 df-sb 1789 df-eu 2060 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-rex 2494 df-v 2781 df-sbc 3009 df-un 3181 df-sn 3652 df-pr 3653 df-uni 3868 df-iota 5254 |
| This theorem is referenced by: riotacl2 5942 eroprf 6745 |
| Copyright terms: Public domain | W3C validator |