Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > riotacl2 | Unicode version |
Description: Membership law for
"the unique element in such that ."
(Contributed by NM, 21-Aug-2011.) (Revised by Mario Carneiro, 23-Dec-2016.) |
Ref | Expression |
---|---|
riotacl2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-reu 2455 | . . 3 | |
2 | iotacl 5183 | . . 3 | |
3 | 1, 2 | sylbi 120 | . 2 |
4 | df-riota 5809 | . 2 | |
5 | df-rab 2457 | . 2 | |
6 | 3, 4, 5 | 3eltr4g 2256 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 weu 2019 wcel 2141 cab 2156 wreu 2450 crab 2452 cio 5158 crio 5808 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-un 3125 df-sn 3589 df-pr 3590 df-uni 3797 df-iota 5160 df-riota 5809 |
This theorem is referenced by: riotacl 5823 riotasbc 5824 supubti 6976 suplubti 6977 grplinv 12752 |
Copyright terms: Public domain | W3C validator |