ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  riotacl2 Unicode version

Theorem riotacl2 5695
Description: Membership law for "the unique element in  A such that  ph."

(Contributed by NM, 21-Aug-2011.) (Revised by Mario Carneiro, 23-Dec-2016.)

Assertion
Ref Expression
riotacl2  |-  ( E! x  e.  A  ph  ->  ( iota_ x  e.  A  ph )  e.  { x  e.  A  |  ph }
)

Proof of Theorem riotacl2
StepHypRef Expression
1 df-reu 2395 . . 3  |-  ( E! x  e.  A  ph  <->  E! x ( x  e.  A  /\  ph )
)
2 iotacl 5067 . . 3  |-  ( E! x ( x  e.  A  /\  ph )  ->  ( iota x ( x  e.  A  /\  ph ) )  e.  {
x  |  ( x  e.  A  /\  ph ) } )
31, 2sylbi 120 . 2  |-  ( E! x  e.  A  ph  ->  ( iota x ( x  e.  A  /\  ph ) )  e.  {
x  |  ( x  e.  A  /\  ph ) } )
4 df-riota 5682 . 2  |-  ( iota_ x  e.  A  ph )  =  ( iota x
( x  e.  A  /\  ph ) )
5 df-rab 2397 . 2  |-  { x  e.  A  |  ph }  =  { x  |  ( x  e.  A  /\  ph ) }
63, 4, 53eltr4g 2198 1  |-  ( E! x  e.  A  ph  ->  ( iota_ x  e.  A  ph )  e.  { x  e.  A  |  ph }
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    e. wcel 1461   E!weu 1973   {cab 2099   E!wreu 2390   {crab 2392   iotacio 5042   iota_crio 5681
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095
This theorem depends on definitions:  df-bi 116  df-tru 1315  df-nf 1418  df-sb 1717  df-eu 1976  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-rex 2394  df-reu 2395  df-rab 2397  df-v 2657  df-sbc 2877  df-un 3039  df-sn 3497  df-pr 3498  df-uni 3701  df-iota 5044  df-riota 5682
This theorem is referenced by:  riotacl  5696  riotasbc  5697  supubti  6835  suplubti  6836
  Copyright terms: Public domain W3C validator