ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  riotacl2 Unicode version

Theorem riotacl2 5936
Description: Membership law for "the unique element in  A such that  ph."

(Contributed by NM, 21-Aug-2011.) (Revised by Mario Carneiro, 23-Dec-2016.)

Assertion
Ref Expression
riotacl2  |-  ( E! x  e.  A  ph  ->  ( iota_ x  e.  A  ph )  e.  { x  e.  A  |  ph }
)

Proof of Theorem riotacl2
StepHypRef Expression
1 df-reu 2493 . . 3  |-  ( E! x  e.  A  ph  <->  E! x ( x  e.  A  /\  ph )
)
2 iotacl 5275 . . 3  |-  ( E! x ( x  e.  A  /\  ph )  ->  ( iota x ( x  e.  A  /\  ph ) )  e.  {
x  |  ( x  e.  A  /\  ph ) } )
31, 2sylbi 121 . 2  |-  ( E! x  e.  A  ph  ->  ( iota x ( x  e.  A  /\  ph ) )  e.  {
x  |  ( x  e.  A  /\  ph ) } )
4 df-riota 5922 . 2  |-  ( iota_ x  e.  A  ph )  =  ( iota x
( x  e.  A  /\  ph ) )
5 df-rab 2495 . 2  |-  { x  e.  A  |  ph }  =  { x  |  ( x  e.  A  /\  ph ) }
63, 4, 53eltr4g 2293 1  |-  ( E! x  e.  A  ph  ->  ( iota_ x  e.  A  ph )  e.  { x  e.  A  |  ph }
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   E!weu 2055    e. wcel 2178   {cab 2193   E!wreu 2488   {crab 2490   iotacio 5249   iota_crio 5921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-un 3178  df-sn 3649  df-pr 3650  df-uni 3865  df-iota 5251  df-riota 5922
This theorem is referenced by:  riotacl  5937  riotasbc  5938  supubti  7127  suplubti  7128  grplinv  13497
  Copyright terms: Public domain W3C validator