ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  riotacl2 Unicode version

Theorem riotacl2 5811
Description: Membership law for "the unique element in  A such that  ph."

(Contributed by NM, 21-Aug-2011.) (Revised by Mario Carneiro, 23-Dec-2016.)

Assertion
Ref Expression
riotacl2  |-  ( E! x  e.  A  ph  ->  ( iota_ x  e.  A  ph )  e.  { x  e.  A  |  ph }
)

Proof of Theorem riotacl2
StepHypRef Expression
1 df-reu 2451 . . 3  |-  ( E! x  e.  A  ph  <->  E! x ( x  e.  A  /\  ph )
)
2 iotacl 5176 . . 3  |-  ( E! x ( x  e.  A  /\  ph )  ->  ( iota x ( x  e.  A  /\  ph ) )  e.  {
x  |  ( x  e.  A  /\  ph ) } )
31, 2sylbi 120 . 2  |-  ( E! x  e.  A  ph  ->  ( iota x ( x  e.  A  /\  ph ) )  e.  {
x  |  ( x  e.  A  /\  ph ) } )
4 df-riota 5798 . 2  |-  ( iota_ x  e.  A  ph )  =  ( iota x
( x  e.  A  /\  ph ) )
5 df-rab 2453 . 2  |-  { x  e.  A  |  ph }  =  { x  |  ( x  e.  A  /\  ph ) }
63, 4, 53eltr4g 2252 1  |-  ( E! x  e.  A  ph  ->  ( iota_ x  e.  A  ph )  e.  { x  e.  A  |  ph }
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103   E!weu 2014    e. wcel 2136   {cab 2151   E!wreu 2446   {crab 2448   iotacio 5151   iota_crio 5797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-un 3120  df-sn 3582  df-pr 3583  df-uni 3790  df-iota 5153  df-riota 5798
This theorem is referenced by:  riotacl  5812  riotasbc  5813  supubti  6964  suplubti  6965
  Copyright terms: Public domain W3C validator