ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iotaeq GIF version

Theorem iotaeq 5140
Description: Equality theorem for descriptions. (Contributed by Andrew Salmon, 30-Jun-2011.)
Assertion
Ref Expression
iotaeq (∀𝑥 𝑥 = 𝑦 → (℩𝑥𝜑) = (℩𝑦𝜑))

Proof of Theorem iotaeq
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 drsb1 1779 . . . . . . 7 (∀𝑥 𝑥 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑧 / 𝑦]𝜑))
2 df-clab 2144 . . . . . . 7 (𝑧 ∈ {𝑥𝜑} ↔ [𝑧 / 𝑥]𝜑)
3 df-clab 2144 . . . . . . 7 (𝑧 ∈ {𝑦𝜑} ↔ [𝑧 / 𝑦]𝜑)
41, 2, 33bitr4g 222 . . . . . 6 (∀𝑥 𝑥 = 𝑦 → (𝑧 ∈ {𝑥𝜑} ↔ 𝑧 ∈ {𝑦𝜑}))
54eqrdv 2155 . . . . 5 (∀𝑥 𝑥 = 𝑦 → {𝑥𝜑} = {𝑦𝜑})
65eqeq1d 2166 . . . 4 (∀𝑥 𝑥 = 𝑦 → ({𝑥𝜑} = {𝑧} ↔ {𝑦𝜑} = {𝑧}))
76abbidv 2275 . . 3 (∀𝑥 𝑥 = 𝑦 → {𝑧 ∣ {𝑥𝜑} = {𝑧}} = {𝑧 ∣ {𝑦𝜑} = {𝑧}})
87unieqd 3783 . 2 (∀𝑥 𝑥 = 𝑦 {𝑧 ∣ {𝑥𝜑} = {𝑧}} = {𝑧 ∣ {𝑦𝜑} = {𝑧}})
9 df-iota 5132 . 2 (℩𝑥𝜑) = {𝑧 ∣ {𝑥𝜑} = {𝑧}}
10 df-iota 5132 . 2 (℩𝑦𝜑) = {𝑧 ∣ {𝑦𝜑} = {𝑧}}
118, 9, 103eqtr4g 2215 1 (∀𝑥 𝑥 = 𝑦 → (℩𝑥𝜑) = (℩𝑦𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1333   = wceq 1335  [wsb 1742  wcel 2128  {cab 2143  {csn 3560   cuni 3772  cio 5130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-rex 2441  df-uni 3773  df-iota 5132
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator