| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > iotaeq | GIF version | ||
| Description: Equality theorem for descriptions. (Contributed by Andrew Salmon, 30-Jun-2011.) | 
| Ref | Expression | 
|---|---|
| iotaeq | ⊢ (∀𝑥 𝑥 = 𝑦 → (℩𝑥𝜑) = (℩𝑦𝜑)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | drsb1 1813 | . . . . . . 7 ⊢ (∀𝑥 𝑥 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑧 / 𝑦]𝜑)) | |
| 2 | df-clab 2183 | . . . . . . 7 ⊢ (𝑧 ∈ {𝑥 ∣ 𝜑} ↔ [𝑧 / 𝑥]𝜑) | |
| 3 | df-clab 2183 | . . . . . . 7 ⊢ (𝑧 ∈ {𝑦 ∣ 𝜑} ↔ [𝑧 / 𝑦]𝜑) | |
| 4 | 1, 2, 3 | 3bitr4g 223 | . . . . . 6 ⊢ (∀𝑥 𝑥 = 𝑦 → (𝑧 ∈ {𝑥 ∣ 𝜑} ↔ 𝑧 ∈ {𝑦 ∣ 𝜑})) | 
| 5 | 4 | eqrdv 2194 | . . . . 5 ⊢ (∀𝑥 𝑥 = 𝑦 → {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜑}) | 
| 6 | 5 | eqeq1d 2205 | . . . 4 ⊢ (∀𝑥 𝑥 = 𝑦 → ({𝑥 ∣ 𝜑} = {𝑧} ↔ {𝑦 ∣ 𝜑} = {𝑧})) | 
| 7 | 6 | abbidv 2314 | . . 3 ⊢ (∀𝑥 𝑥 = 𝑦 → {𝑧 ∣ {𝑥 ∣ 𝜑} = {𝑧}} = {𝑧 ∣ {𝑦 ∣ 𝜑} = {𝑧}}) | 
| 8 | 7 | unieqd 3850 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → ∪ {𝑧 ∣ {𝑥 ∣ 𝜑} = {𝑧}} = ∪ {𝑧 ∣ {𝑦 ∣ 𝜑} = {𝑧}}) | 
| 9 | df-iota 5219 | . 2 ⊢ (℩𝑥𝜑) = ∪ {𝑧 ∣ {𝑥 ∣ 𝜑} = {𝑧}} | |
| 10 | df-iota 5219 | . 2 ⊢ (℩𝑦𝜑) = ∪ {𝑧 ∣ {𝑦 ∣ 𝜑} = {𝑧}} | |
| 11 | 8, 9, 10 | 3eqtr4g 2254 | 1 ⊢ (∀𝑥 𝑥 = 𝑦 → (℩𝑥𝜑) = (℩𝑦𝜑)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∀wal 1362 = wceq 1364 [wsb 1776 ∈ wcel 2167 {cab 2182 {csn 3622 ∪ cuni 3839 ℩cio 5217 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-uni 3840 df-iota 5219 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |