ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iotaeq GIF version

Theorem iotaeq 5054
Description: Equality theorem for descriptions. (Contributed by Andrew Salmon, 30-Jun-2011.)
Assertion
Ref Expression
iotaeq (∀𝑥 𝑥 = 𝑦 → (℩𝑥𝜑) = (℩𝑦𝜑))

Proof of Theorem iotaeq
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 drsb1 1753 . . . . . . 7 (∀𝑥 𝑥 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑧 / 𝑦]𝜑))
2 df-clab 2102 . . . . . . 7 (𝑧 ∈ {𝑥𝜑} ↔ [𝑧 / 𝑥]𝜑)
3 df-clab 2102 . . . . . . 7 (𝑧 ∈ {𝑦𝜑} ↔ [𝑧 / 𝑦]𝜑)
41, 2, 33bitr4g 222 . . . . . 6 (∀𝑥 𝑥 = 𝑦 → (𝑧 ∈ {𝑥𝜑} ↔ 𝑧 ∈ {𝑦𝜑}))
54eqrdv 2113 . . . . 5 (∀𝑥 𝑥 = 𝑦 → {𝑥𝜑} = {𝑦𝜑})
65eqeq1d 2123 . . . 4 (∀𝑥 𝑥 = 𝑦 → ({𝑥𝜑} = {𝑧} ↔ {𝑦𝜑} = {𝑧}))
76abbidv 2232 . . 3 (∀𝑥 𝑥 = 𝑦 → {𝑧 ∣ {𝑥𝜑} = {𝑧}} = {𝑧 ∣ {𝑦𝜑} = {𝑧}})
87unieqd 3713 . 2 (∀𝑥 𝑥 = 𝑦 {𝑧 ∣ {𝑥𝜑} = {𝑧}} = {𝑧 ∣ {𝑦𝜑} = {𝑧}})
9 df-iota 5046 . 2 (℩𝑥𝜑) = {𝑧 ∣ {𝑥𝜑} = {𝑧}}
10 df-iota 5046 . 2 (℩𝑦𝜑) = {𝑧 ∣ {𝑦𝜑} = {𝑧}}
118, 9, 103eqtr4g 2172 1 (∀𝑥 𝑥 = 𝑦 → (℩𝑥𝜑) = (℩𝑦𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1312   = wceq 1314  wcel 1463  [wsb 1718  {cab 2101  {csn 3493   cuni 3702  cio 5044
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097
This theorem depends on definitions:  df-bi 116  df-tru 1317  df-nf 1420  df-sb 1719  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-rex 2396  df-uni 3703  df-iota 5046
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator