Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > unieqd | Unicode version |
Description: Deduction of equality of two class unions. (Contributed by NM, 21-Apr-1995.) |
Ref | Expression |
---|---|
unieqd.1 |
Ref | Expression |
---|---|
unieqd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unieqd.1 | . 2 | |
2 | unieq 3805 | . 2 | |
3 | 1, 2 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1348 cuni 3796 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rex 2454 df-uni 3797 |
This theorem is referenced by: uniprg 3811 unisng 3813 unisn3 4430 onsucuni2 4548 opswapg 5097 elxp4 5098 elxp5 5099 iotaeq 5168 iotabi 5169 uniabio 5170 funfvdm 5559 funfvdm2 5560 fvun1 5562 fniunfv 5741 funiunfvdm 5742 1stvalg 6121 2ndvalg 6122 fo1st 6136 fo2nd 6137 f1stres 6138 f2ndres 6139 2nd1st 6159 cnvf1olem 6203 brtpos2 6230 dftpos4 6242 tpostpos 6243 recseq 6285 tfrexlem 6313 ixpsnf1o 6714 xpcomco 6804 xpassen 6808 xpdom2 6809 supeq1 6963 supeq2 6966 supeq3 6967 supeq123d 6968 en2other2 7173 dfinfre 8872 hashinfom 10712 hashennn 10714 fsumcnv 11400 fprodcnv 11588 isbasisg 12836 basis1 12839 baspartn 12842 tgval 12843 eltg 12846 ntrfval 12894 ntrval 12904 tgrest 12963 restuni2 12971 lmfval 12986 cnfval 12988 cnpfval 12989 txtopon 13056 txswaphmeolem 13114 peano4nninf 14039 |
Copyright terms: Public domain | W3C validator |