| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unieqd | Unicode version | ||
| Description: Deduction of equality of two class unions. (Contributed by NM, 21-Apr-1995.) |
| Ref | Expression |
|---|---|
| unieqd.1 |
|
| Ref | Expression |
|---|---|
| unieqd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unieqd.1 |
. 2
| |
| 2 | unieq 3859 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-rex 2490 df-uni 3851 |
| This theorem is referenced by: uniprg 3865 unisng 3867 unisn3 4493 onsucuni2 4613 opswapg 5170 elxp4 5171 elxp5 5172 iotaeq 5241 iotabi 5242 uniabio 5243 funfvdm 5644 funfvdm2 5645 fvun1 5647 fniunfv 5833 funiunfvdm 5834 1stvalg 6230 2ndvalg 6231 fo1st 6245 fo2nd 6246 f1stres 6247 f2ndres 6248 2nd1st 6268 cnvf1olem 6312 brtpos2 6339 dftpos4 6351 tpostpos 6352 recseq 6394 tfrexlem 6422 ixpsnf1o 6825 xpcomco 6923 xpassen 6927 xpdom2 6928 supeq1 7090 supeq2 7093 supeq3 7094 supeq123d 7095 en2other2 7306 dfinfre 9031 hashinfom 10925 hashennn 10927 fsumcnv 11781 fprodcnv 11969 tgval 13127 ptex 13129 lssuni 14158 lspuni0 14219 lss0v 14225 zrhval 14412 zrhvalg 14413 zrhval2 14414 zrhpropd 14421 isbasisg 14549 basis1 14552 baspartn 14555 eltg 14557 ntrfval 14605 ntrval 14615 tgrest 14674 restuni2 14682 lmfval 14697 cnfval 14699 cnpfval 14700 txtopon 14767 txswaphmeolem 14825 peano4nninf 15980 |
| Copyright terms: Public domain | W3C validator |