![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > unieqd | Unicode version |
Description: Deduction of equality of two class unions. (Contributed by NM, 21-Apr-1995.) |
Ref | Expression |
---|---|
unieqd.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
unieqd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unieqd.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | unieq 3845 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl 14 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rex 2478 df-uni 3837 |
This theorem is referenced by: uniprg 3851 unisng 3853 unisn3 4477 onsucuni2 4597 opswapg 5153 elxp4 5154 elxp5 5155 iotaeq 5224 iotabi 5225 uniabio 5226 funfvdm 5621 funfvdm2 5622 fvun1 5624 fniunfv 5806 funiunfvdm 5807 1stvalg 6197 2ndvalg 6198 fo1st 6212 fo2nd 6213 f1stres 6214 f2ndres 6215 2nd1st 6235 cnvf1olem 6279 brtpos2 6306 dftpos4 6318 tpostpos 6319 recseq 6361 tfrexlem 6389 ixpsnf1o 6792 xpcomco 6882 xpassen 6886 xpdom2 6887 supeq1 7047 supeq2 7050 supeq3 7051 supeq123d 7052 en2other2 7258 dfinfre 8977 hashinfom 10852 hashennn 10854 fsumcnv 11583 fprodcnv 11771 tgval 12876 ptex 12878 lssuni 13862 lspuni0 13923 lss0v 13929 zrhval 14116 zrhvalg 14117 zrhval2 14118 zrhpropd 14125 isbasisg 14223 basis1 14226 baspartn 14229 eltg 14231 ntrfval 14279 ntrval 14289 tgrest 14348 restuni2 14356 lmfval 14371 cnfval 14373 cnpfval 14374 txtopon 14441 txswaphmeolem 14499 peano4nninf 15566 |
Copyright terms: Public domain | W3C validator |