| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unieqd | Unicode version | ||
| Description: Deduction of equality of two class unions. (Contributed by NM, 21-Apr-1995.) |
| Ref | Expression |
|---|---|
| unieqd.1 |
|
| Ref | Expression |
|---|---|
| unieqd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unieqd.1 |
. 2
| |
| 2 | unieq 3849 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-uni 3841 |
| This theorem is referenced by: uniprg 3855 unisng 3857 unisn3 4481 onsucuni2 4601 opswapg 5157 elxp4 5158 elxp5 5159 iotaeq 5228 iotabi 5229 uniabio 5230 funfvdm 5627 funfvdm2 5628 fvun1 5630 fniunfv 5812 funiunfvdm 5813 1stvalg 6209 2ndvalg 6210 fo1st 6224 fo2nd 6225 f1stres 6226 f2ndres 6227 2nd1st 6247 cnvf1olem 6291 brtpos2 6318 dftpos4 6330 tpostpos 6331 recseq 6373 tfrexlem 6401 ixpsnf1o 6804 xpcomco 6894 xpassen 6898 xpdom2 6899 supeq1 7061 supeq2 7064 supeq3 7065 supeq123d 7066 en2other2 7275 dfinfre 9000 hashinfom 10887 hashennn 10889 fsumcnv 11619 fprodcnv 11807 tgval 12964 ptex 12966 lssuni 13995 lspuni0 14056 lss0v 14062 zrhval 14249 zrhvalg 14250 zrhval2 14251 zrhpropd 14258 isbasisg 14364 basis1 14367 baspartn 14370 eltg 14372 ntrfval 14420 ntrval 14430 tgrest 14489 restuni2 14497 lmfval 14512 cnfval 14514 cnpfval 14515 txtopon 14582 txswaphmeolem 14640 peano4nninf 15737 |
| Copyright terms: Public domain | W3C validator |