Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > unieqd | Unicode version |
Description: Deduction of equality of two class unions. (Contributed by NM, 21-Apr-1995.) |
Ref | Expression |
---|---|
unieqd.1 |
Ref | Expression |
---|---|
unieqd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unieqd.1 | . 2 | |
2 | unieq 3798 | . 2 | |
3 | 1, 2 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1343 cuni 3789 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rex 2450 df-uni 3790 |
This theorem is referenced by: uniprg 3804 unisng 3806 unisn3 4423 onsucuni2 4541 opswapg 5090 elxp4 5091 elxp5 5092 iotaeq 5161 iotabi 5162 uniabio 5163 funfvdm 5549 funfvdm2 5550 fvun1 5552 fniunfv 5730 funiunfvdm 5731 1stvalg 6110 2ndvalg 6111 fo1st 6125 fo2nd 6126 f1stres 6127 f2ndres 6128 2nd1st 6148 cnvf1olem 6192 brtpos2 6219 dftpos4 6231 tpostpos 6232 recseq 6274 tfrexlem 6302 ixpsnf1o 6702 xpcomco 6792 xpassen 6796 xpdom2 6797 supeq1 6951 supeq2 6954 supeq3 6955 supeq123d 6956 en2other2 7152 dfinfre 8851 hashinfom 10691 hashennn 10693 fsumcnv 11378 fprodcnv 11566 isbasisg 12682 basis1 12685 baspartn 12688 tgval 12689 eltg 12692 ntrfval 12740 ntrval 12750 tgrest 12809 restuni2 12817 lmfval 12832 cnfval 12834 cnpfval 12835 txtopon 12902 txswaphmeolem 12960 peano4nninf 13886 |
Copyright terms: Public domain | W3C validator |