| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unieqd | Unicode version | ||
| Description: Deduction of equality of two class unions. (Contributed by NM, 21-Apr-1995.) |
| Ref | Expression |
|---|---|
| unieqd.1 |
|
| Ref | Expression |
|---|---|
| unieqd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unieqd.1 |
. 2
| |
| 2 | unieq 3873 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-rex 2492 df-uni 3865 |
| This theorem is referenced by: uniprg 3879 unisng 3881 unisn3 4510 onsucuni2 4630 opswapg 5188 elxp4 5189 elxp5 5190 iotaeq 5259 iotabi 5260 uniabio 5261 funfvdm 5665 funfvdm2 5666 fvun1 5668 fniunfv 5854 funiunfvdm 5855 1stvalg 6251 2ndvalg 6252 fo1st 6266 fo2nd 6267 f1stres 6268 f2ndres 6269 2nd1st 6289 cnvf1olem 6333 brtpos2 6360 dftpos4 6372 tpostpos 6373 recseq 6415 tfrexlem 6443 ixpsnf1o 6846 xpcomco 6946 xpassen 6950 xpdom2 6951 supeq1 7114 supeq2 7117 supeq3 7118 supeq123d 7119 en2other2 7335 dfinfre 9064 hashinfom 10960 hashennn 10962 fsumcnv 11863 fprodcnv 12051 tgval 13209 ptex 13211 lssuni 14240 lspuni0 14301 lss0v 14307 zrhval 14494 zrhvalg 14495 zrhval2 14496 zrhpropd 14503 isbasisg 14631 basis1 14634 baspartn 14637 eltg 14639 ntrfval 14687 ntrval 14697 tgrest 14756 restuni2 14764 lmfval 14779 cnfval 14781 cnpfval 14782 txtopon 14849 txswaphmeolem 14907 peano4nninf 16145 |
| Copyright terms: Public domain | W3C validator |