ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iotaint Unicode version

Theorem iotaint 5166
Description: Equivalence between two different forms of  iota. (Contributed by Mario Carneiro, 24-Dec-2016.)
Assertion
Ref Expression
iotaint  |-  ( E! x ph  ->  ( iota x ph )  = 
|^| { x  |  ph } )

Proof of Theorem iotaint
StepHypRef Expression
1 iotauni 5165 . 2  |-  ( E! x ph  ->  ( iota x ph )  = 
U. { x  | 
ph } )
2 uniintabim 3861 . 2  |-  ( E! x ph  ->  U. {
x  |  ph }  =  |^| { x  | 
ph } )
31, 2eqtrd 2198 1  |-  ( E! x ph  ->  ( iota x ph )  = 
|^| { x  |  ph } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343   E!weu 2014   {cab 2151   U.cuni 3789   |^|cint 3824   iotacio 5151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-sn 3582  df-pr 3583  df-uni 3790  df-int 3825  df-iota 5153
This theorem is referenced by:  bdcriota  13765
  Copyright terms: Public domain W3C validator