Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > iotaint | Unicode version |
Description: Equivalence between two different forms of . (Contributed by Mario Carneiro, 24-Dec-2016.) |
Ref | Expression |
---|---|
iotaint |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iotauni 5170 | . 2 | |
2 | uniintabim 3866 | . 2 | |
3 | 1, 2 | eqtrd 2203 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1348 weu 2019 cab 2156 cuni 3794 cint 3829 cio 5156 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-sn 3587 df-pr 3588 df-uni 3795 df-int 3830 df-iota 5158 |
This theorem is referenced by: bdcriota 13878 |
Copyright terms: Public domain | W3C validator |