ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iota1 Unicode version

Theorem iota1 5038
Description: Property of iota. (Contributed by NM, 23-Aug-2011.) (Revised by Mario Carneiro, 23-Dec-2016.)
Assertion
Ref Expression
iota1  |-  ( E! x ph  ->  ( ph 
<->  ( iota x ph )  =  x )
)

Proof of Theorem iota1
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 df-eu 1963 . 2  |-  ( E! x ph  <->  E. z A. x ( ph  <->  x  =  z ) )
2 sp 1456 . . . . 5  |-  ( A. x ( ph  <->  x  =  z )  ->  ( ph 
<->  x  =  z ) )
3 iotaval 5035 . . . . . 6  |-  ( A. x ( ph  <->  x  =  z )  ->  ( iota x ph )  =  z )
43eqeq2d 2111 . . . . 5  |-  ( A. x ( ph  <->  x  =  z )  ->  (
x  =  ( iota
x ph )  <->  x  =  z ) )
52, 4bitr4d 190 . . . 4  |-  ( A. x ( ph  <->  x  =  z )  ->  ( ph 
<->  x  =  ( iota
x ph ) ) )
6 eqcom 2102 . . . 4  |-  ( x  =  ( iota x ph )  <->  ( iota x ph )  =  x
)
75, 6syl6bb 195 . . 3  |-  ( A. x ( ph  <->  x  =  z )  ->  ( ph 
<->  ( iota x ph )  =  x )
)
87exlimiv 1545 . 2  |-  ( E. z A. x (
ph 
<->  x  =  z )  ->  ( ph  <->  ( iota x ph )  =  x ) )
91, 8sylbi 120 1  |-  ( E! x ph  ->  ( ph 
<->  ( iota x ph )  =  x )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   A.wal 1297    = wceq 1299   E.wex 1436   E!weu 1960   iotacio 5022
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082
This theorem depends on definitions:  df-bi 116  df-tru 1302  df-nf 1405  df-sb 1704  df-eu 1963  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-rex 2381  df-v 2643  df-sbc 2863  df-un 3025  df-sn 3480  df-pr 3481  df-uni 3684  df-iota 5024
This theorem is referenced by:  iota2df  5048  sniota  5051  tz6.12-1  5380  riota1  5680  riota1a  5681  erovlem  6451
  Copyright terms: Public domain W3C validator