ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iotauni Unicode version

Theorem iotauni 5205
Description: Equivalence between two different forms of  iota. (Contributed by Andrew Salmon, 12-Jul-2011.)
Assertion
Ref Expression
iotauni  |-  ( E! x ph  ->  ( iota x ph )  = 
U. { x  | 
ph } )

Proof of Theorem iotauni
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 df-eu 2041 . 2  |-  ( E! x ph  <->  E. z A. x ( ph  <->  x  =  z ) )
2 iotaval 5204 . . . 4  |-  ( A. x ( ph  <->  x  =  z )  ->  ( iota x ph )  =  z )
3 uniabio 5203 . . . 4  |-  ( A. x ( ph  <->  x  =  z )  ->  U. {
x  |  ph }  =  z )
42, 3eqtr4d 2225 . . 3  |-  ( A. x ( ph  <->  x  =  z )  ->  ( iota x ph )  = 
U. { x  | 
ph } )
54exlimiv 1609 . 2  |-  ( E. z A. x (
ph 
<->  x  =  z )  ->  ( iota x ph )  =  U. { x  |  ph }
)
61, 5sylbi 121 1  |-  ( E! x ph  ->  ( iota x ph )  = 
U. { x  | 
ph } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1362    = wceq 1364   E.wex 1503   E!weu 2038   {cab 2175   U.cuni 3824   iotacio 5191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-rex 2474  df-v 2754  df-sbc 2978  df-un 3148  df-sn 3613  df-pr 3614  df-uni 3825  df-iota 5193
This theorem is referenced by:  iotaint  5206  fveu  5522  riotauni  5853
  Copyright terms: Public domain W3C validator