ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iotauni Unicode version

Theorem iotauni 5192
Description: Equivalence between two different forms of  iota. (Contributed by Andrew Salmon, 12-Jul-2011.)
Assertion
Ref Expression
iotauni  |-  ( E! x ph  ->  ( iota x ph )  = 
U. { x  | 
ph } )

Proof of Theorem iotauni
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 df-eu 2029 . 2  |-  ( E! x ph  <->  E. z A. x ( ph  <->  x  =  z ) )
2 iotaval 5191 . . . 4  |-  ( A. x ( ph  <->  x  =  z )  ->  ( iota x ph )  =  z )
3 uniabio 5190 . . . 4  |-  ( A. x ( ph  <->  x  =  z )  ->  U. {
x  |  ph }  =  z )
42, 3eqtr4d 2213 . . 3  |-  ( A. x ( ph  <->  x  =  z )  ->  ( iota x ph )  = 
U. { x  | 
ph } )
54exlimiv 1598 . 2  |-  ( E. z A. x (
ph 
<->  x  =  z )  ->  ( iota x ph )  =  U. { x  |  ph }
)
61, 5sylbi 121 1  |-  ( E! x ph  ->  ( iota x ph )  = 
U. { x  | 
ph } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1351    = wceq 1353   E.wex 1492   E!weu 2026   {cab 2163   U.cuni 3811   iotacio 5178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-rex 2461  df-v 2741  df-sbc 2965  df-un 3135  df-sn 3600  df-pr 3601  df-uni 3812  df-iota 5180
This theorem is referenced by:  iotaint  5193  fveu  5509  riotauni  5839
  Copyright terms: Public domain W3C validator