ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iotauni Unicode version

Theorem iotauni 5243
Description: Equivalence between two different forms of  iota. (Contributed by Andrew Salmon, 12-Jul-2011.)
Assertion
Ref Expression
iotauni  |-  ( E! x ph  ->  ( iota x ph )  = 
U. { x  | 
ph } )

Proof of Theorem iotauni
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 df-eu 2056 . 2  |-  ( E! x ph  <->  E. z A. x ( ph  <->  x  =  z ) )
2 iotaval 5242 . . . 4  |-  ( A. x ( ph  <->  x  =  z )  ->  ( iota x ph )  =  z )
3 uniabio 5241 . . . 4  |-  ( A. x ( ph  <->  x  =  z )  ->  U. {
x  |  ph }  =  z )
42, 3eqtr4d 2240 . . 3  |-  ( A. x ( ph  <->  x  =  z )  ->  ( iota x ph )  = 
U. { x  | 
ph } )
54exlimiv 1620 . 2  |-  ( E. z A. x (
ph 
<->  x  =  z )  ->  ( iota x ph )  =  U. { x  |  ph }
)
61, 5sylbi 121 1  |-  ( E! x ph  ->  ( iota x ph )  = 
U. { x  | 
ph } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1370    = wceq 1372   E.wex 1514   E!weu 2053   {cab 2190   U.cuni 3849   iotacio 5229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-rex 2489  df-v 2773  df-sbc 2998  df-un 3169  df-sn 3638  df-pr 3639  df-uni 3850  df-iota 5231
This theorem is referenced by:  iotaint  5244  fveu  5567  riotauni  5905
  Copyright terms: Public domain W3C validator