ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iotaint GIF version

Theorem iotaint 5268
Description: Equivalence between two different forms of . (Contributed by Mario Carneiro, 24-Dec-2016.)
Assertion
Ref Expression
iotaint (∃!𝑥𝜑 → (℩𝑥𝜑) = {𝑥𝜑})

Proof of Theorem iotaint
StepHypRef Expression
1 iotauni 5267 . 2 (∃!𝑥𝜑 → (℩𝑥𝜑) = {𝑥𝜑})
2 uniintabim 3939 . 2 (∃!𝑥𝜑 {𝑥𝜑} = {𝑥𝜑})
31, 2eqtrd 2242 1 (∃!𝑥𝜑 → (℩𝑥𝜑) = {𝑥𝜑})
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1375  ∃!weu 2057  {cab 2195   cuni 3867   cint 3902  cio 5252
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-ext 2191
This theorem depends on definitions:  df-bi 117  df-tru 1378  df-nf 1487  df-sb 1789  df-eu 2060  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493  df-rex 2494  df-v 2781  df-sbc 3009  df-un 3181  df-in 3183  df-sn 3652  df-pr 3653  df-uni 3868  df-int 3903  df-iota 5254
This theorem is referenced by:  bdcriota  16156
  Copyright terms: Public domain W3C validator