Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > iotaint | GIF version |
Description: Equivalence between two different forms of ℩. (Contributed by Mario Carneiro, 24-Dec-2016.) |
Ref | Expression |
---|---|
iotaint | ⊢ (∃!𝑥𝜑 → (℩𝑥𝜑) = ∩ {𝑥 ∣ 𝜑}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iotauni 5182 | . 2 ⊢ (∃!𝑥𝜑 → (℩𝑥𝜑) = ∪ {𝑥 ∣ 𝜑}) | |
2 | uniintabim 3877 | . 2 ⊢ (∃!𝑥𝜑 → ∪ {𝑥 ∣ 𝜑} = ∩ {𝑥 ∣ 𝜑}) | |
3 | 1, 2 | eqtrd 2208 | 1 ⊢ (∃!𝑥𝜑 → (℩𝑥𝜑) = ∩ {𝑥 ∣ 𝜑}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 ∃!weu 2024 {cab 2161 ∪ cuni 3805 ∩ cint 3840 ℩cio 5168 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-sbc 2961 df-un 3131 df-in 3133 df-sn 3595 df-pr 3596 df-uni 3806 df-int 3841 df-iota 5170 |
This theorem is referenced by: bdcriota 14195 |
Copyright terms: Public domain | W3C validator |