ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zfpair2 Unicode version

Theorem zfpair2 4195
Description: Derive the abbreviated version of the Axiom of Pairing from ax-pr 4194. (Contributed by NM, 14-Nov-2006.)
Assertion
Ref Expression
zfpair2  |-  { x ,  y }  e.  _V

Proof of Theorem zfpair2
Dummy variables  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-pr 4194 . . . 4  |-  E. z A. w ( ( w  =  x  \/  w  =  y )  ->  w  e.  z )
21bm1.3ii 4110 . . 3  |-  E. z A. w ( w  e.  z  <->  ( w  =  x  \/  w  =  y ) )
3 dfcleq 2164 . . . . 5  |-  ( z  =  { x ,  y }  <->  A. w
( w  e.  z  <-> 
w  e.  { x ,  y } ) )
4 vex 2733 . . . . . . . 8  |-  w  e. 
_V
54elpr 3604 . . . . . . 7  |-  ( w  e.  { x ,  y }  <->  ( w  =  x  \/  w  =  y ) )
65bibi2i 226 . . . . . 6  |-  ( ( w  e.  z  <->  w  e.  { x ,  y } )  <->  ( w  e.  z  <->  ( w  =  x  \/  w  =  y ) ) )
76albii 1463 . . . . 5  |-  ( A. w ( w  e.  z  <->  w  e.  { x ,  y } )  <->  A. w ( w  e.  z  <->  ( w  =  x  \/  w  =  y ) ) )
83, 7bitri 183 . . . 4  |-  ( z  =  { x ,  y }  <->  A. w
( w  e.  z  <-> 
( w  =  x  \/  w  =  y ) ) )
98exbii 1598 . . 3  |-  ( E. z  z  =  {
x ,  y }  <->  E. z A. w ( w  e.  z  <->  ( w  =  x  \/  w  =  y ) ) )
102, 9mpbir 145 . 2  |-  E. z 
z  =  { x ,  y }
1110issetri 2739 1  |-  { x ,  y }  e.  _V
Colors of variables: wff set class
Syntax hints:    <-> wb 104    \/ wo 703   A.wal 1346    = wceq 1348   E.wex 1485    e. wcel 2141   _Vcvv 2730   {cpr 3584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-un 3125  df-sn 3589  df-pr 3590
This theorem is referenced by:  prexg  4196  onintexmid  4557  funopg  5232
  Copyright terms: Public domain W3C validator