ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zfpair2 Unicode version

Theorem zfpair2 4061
Description: Derive the abbreviated version of the Axiom of Pairing from ax-pr 4060. (Contributed by NM, 14-Nov-2006.)
Assertion
Ref Expression
zfpair2  |-  { x ,  y }  e.  _V

Proof of Theorem zfpair2
Dummy variables  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-pr 4060 . . . 4  |-  E. z A. w ( ( w  =  x  \/  w  =  y )  ->  w  e.  z )
21bm1.3ii 3981 . . 3  |-  E. z A. w ( w  e.  z  <->  ( w  =  x  \/  w  =  y ) )
3 dfcleq 2089 . . . . 5  |-  ( z  =  { x ,  y }  <->  A. w
( w  e.  z  <-> 
w  e.  { x ,  y } ) )
4 vex 2636 . . . . . . . 8  |-  w  e. 
_V
54elpr 3487 . . . . . . 7  |-  ( w  e.  { x ,  y }  <->  ( w  =  x  \/  w  =  y ) )
65bibi2i 226 . . . . . 6  |-  ( ( w  e.  z  <->  w  e.  { x ,  y } )  <->  ( w  e.  z  <->  ( w  =  x  \/  w  =  y ) ) )
76albii 1411 . . . . 5  |-  ( A. w ( w  e.  z  <->  w  e.  { x ,  y } )  <->  A. w ( w  e.  z  <->  ( w  =  x  \/  w  =  y ) ) )
83, 7bitri 183 . . . 4  |-  ( z  =  { x ,  y }  <->  A. w
( w  e.  z  <-> 
( w  =  x  \/  w  =  y ) ) )
98exbii 1548 . . 3  |-  ( E. z  z  =  {
x ,  y }  <->  E. z A. w ( w  e.  z  <->  ( w  =  x  \/  w  =  y ) ) )
102, 9mpbir 145 . 2  |-  E. z 
z  =  { x ,  y }
1110issetri 2642 1  |-  { x ,  y }  e.  _V
Colors of variables: wff set class
Syntax hints:    <-> wb 104    \/ wo 667   A.wal 1294    = wceq 1296   E.wex 1433    e. wcel 1445   _Vcvv 2633   {cpr 3467
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-sep 3978  ax-pr 4060
This theorem depends on definitions:  df-bi 116  df-tru 1299  df-nf 1402  df-sb 1700  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-v 2635  df-un 3017  df-sn 3472  df-pr 3473
This theorem is referenced by:  prexg  4062  onintexmid  4416  funopg  5082
  Copyright terms: Public domain W3C validator