Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-zfpair2 Unicode version

Theorem bj-zfpair2 15846
Description: Proof of zfpair2 4254 using only bounded separation. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-zfpair2  |-  { x ,  y }  e.  _V

Proof of Theorem bj-zfpair2
Dummy variables  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-bdeq 15756 . . . . 5  |- BOUNDED  w  =  x
2 ax-bdeq 15756 . . . . 5  |- BOUNDED  w  =  y
31, 2ax-bdor 15752 . . . 4  |- BOUNDED  ( w  =  x  \/  w  =  y )
4 ax-pr 4253 . . . 4  |-  E. z A. w ( ( w  =  x  \/  w  =  y )  ->  w  e.  z )
53, 4bdbm1.3ii 15827 . . 3  |-  E. z A. w ( w  e.  z  <->  ( w  =  x  \/  w  =  y ) )
6 dfcleq 2199 . . . . 5  |-  ( z  =  { x ,  y }  <->  A. w
( w  e.  z  <-> 
w  e.  { x ,  y } ) )
7 vex 2775 . . . . . . . 8  |-  w  e. 
_V
87elpr 3654 . . . . . . 7  |-  ( w  e.  { x ,  y }  <->  ( w  =  x  \/  w  =  y ) )
98bibi2i 227 . . . . . 6  |-  ( ( w  e.  z  <->  w  e.  { x ,  y } )  <->  ( w  e.  z  <->  ( w  =  x  \/  w  =  y ) ) )
109albii 1493 . . . . 5  |-  ( A. w ( w  e.  z  <->  w  e.  { x ,  y } )  <->  A. w ( w  e.  z  <->  ( w  =  x  \/  w  =  y ) ) )
116, 10bitri 184 . . . 4  |-  ( z  =  { x ,  y }  <->  A. w
( w  e.  z  <-> 
( w  =  x  \/  w  =  y ) ) )
1211exbii 1628 . . 3  |-  ( E. z  z  =  {
x ,  y }  <->  E. z A. w ( w  e.  z  <->  ( w  =  x  \/  w  =  y ) ) )
135, 12mpbir 146 . 2  |-  E. z 
z  =  { x ,  y }
1413issetri 2781 1  |-  { x ,  y }  e.  _V
Colors of variables: wff set class
Syntax hints:    <-> wb 105    \/ wo 710   A.wal 1371    = wceq 1373   E.wex 1515    e. wcel 2176   _Vcvv 2772   {cpr 3634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-pr 4253  ax-bdor 15752  ax-bdeq 15756  ax-bdsep 15820
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-un 3170  df-sn 3639  df-pr 3640
This theorem is referenced by:  bj-prexg  15847
  Copyright terms: Public domain W3C validator