ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iswomni GIF version

Theorem iswomni 7300
Description: The predicate of being weakly omniscient. (Contributed by Jim Kingdon, 9-Jun-2024.)
Assertion
Ref Expression
iswomni (𝐴𝑉 → (𝐴 ∈ WOmni ↔ ∀𝑓(𝑓:𝐴⟶2oDECID𝑥𝐴 (𝑓𝑥) = 1o)))
Distinct variable group:   𝐴,𝑓,𝑥
Allowed substitution hints:   𝑉(𝑥,𝑓)

Proof of Theorem iswomni
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 feq2 5433 . . . 4 (𝑦 = 𝐴 → (𝑓:𝑦⟶2o𝑓:𝐴⟶2o))
2 raleq 2708 . . . . 5 (𝑦 = 𝐴 → (∀𝑥𝑦 (𝑓𝑥) = 1o ↔ ∀𝑥𝐴 (𝑓𝑥) = 1o))
32dcbid 842 . . . 4 (𝑦 = 𝐴 → (DECID𝑥𝑦 (𝑓𝑥) = 1oDECID𝑥𝐴 (𝑓𝑥) = 1o))
41, 3imbi12d 234 . . 3 (𝑦 = 𝐴 → ((𝑓:𝑦⟶2oDECID𝑥𝑦 (𝑓𝑥) = 1o) ↔ (𝑓:𝐴⟶2oDECID𝑥𝐴 (𝑓𝑥) = 1o)))
54albidv 1850 . 2 (𝑦 = 𝐴 → (∀𝑓(𝑓:𝑦⟶2oDECID𝑥𝑦 (𝑓𝑥) = 1o) ↔ ∀𝑓(𝑓:𝐴⟶2oDECID𝑥𝐴 (𝑓𝑥) = 1o)))
6 df-womni 7299 . 2 WOmni = {𝑦 ∣ ∀𝑓(𝑓:𝑦⟶2oDECID𝑥𝑦 (𝑓𝑥) = 1o)}
75, 6elab2g 2930 1 (𝐴𝑉 → (𝐴 ∈ WOmni ↔ ∀𝑓(𝑓:𝐴⟶2oDECID𝑥𝐴 (𝑓𝑥) = 1o)))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  DECID wdc 838  wal 1373   = wceq 1375  wcel 2180  wral 2488  wf 5290  cfv 5294  1oc1o 6525  2oc2o 6526  WOmnicwomni 7298
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-ext 2191
This theorem depends on definitions:  df-bi 117  df-dc 839  df-tru 1378  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493  df-v 2781  df-fn 5297  df-f 5298  df-womni 7299
This theorem is referenced by:  iswomnimap  7301  omniwomnimkv  7302
  Copyright terms: Public domain W3C validator