ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iswomni GIF version

Theorem iswomni 7340
Description: The predicate of being weakly omniscient. (Contributed by Jim Kingdon, 9-Jun-2024.)
Assertion
Ref Expression
iswomni (𝐴𝑉 → (𝐴 ∈ WOmni ↔ ∀𝑓(𝑓:𝐴⟶2oDECID𝑥𝐴 (𝑓𝑥) = 1o)))
Distinct variable group:   𝐴,𝑓,𝑥
Allowed substitution hints:   𝑉(𝑥,𝑓)

Proof of Theorem iswomni
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 feq2 5457 . . . 4 (𝑦 = 𝐴 → (𝑓:𝑦⟶2o𝑓:𝐴⟶2o))
2 raleq 2728 . . . . 5 (𝑦 = 𝐴 → (∀𝑥𝑦 (𝑓𝑥) = 1o ↔ ∀𝑥𝐴 (𝑓𝑥) = 1o))
32dcbid 843 . . . 4 (𝑦 = 𝐴 → (DECID𝑥𝑦 (𝑓𝑥) = 1oDECID𝑥𝐴 (𝑓𝑥) = 1o))
41, 3imbi12d 234 . . 3 (𝑦 = 𝐴 → ((𝑓:𝑦⟶2oDECID𝑥𝑦 (𝑓𝑥) = 1o) ↔ (𝑓:𝐴⟶2oDECID𝑥𝐴 (𝑓𝑥) = 1o)))
54albidv 1870 . 2 (𝑦 = 𝐴 → (∀𝑓(𝑓:𝑦⟶2oDECID𝑥𝑦 (𝑓𝑥) = 1o) ↔ ∀𝑓(𝑓:𝐴⟶2oDECID𝑥𝐴 (𝑓𝑥) = 1o)))
6 df-womni 7339 . 2 WOmni = {𝑦 ∣ ∀𝑓(𝑓:𝑦⟶2oDECID𝑥𝑦 (𝑓𝑥) = 1o)}
75, 6elab2g 2950 1 (𝐴𝑉 → (𝐴 ∈ WOmni ↔ ∀𝑓(𝑓:𝐴⟶2oDECID𝑥𝐴 (𝑓𝑥) = 1o)))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  DECID wdc 839  wal 1393   = wceq 1395  wcel 2200  wral 2508  wf 5314  cfv 5318  1oc1o 6561  2oc2o 6562  WOmnicwomni 7338
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-dc 840  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-v 2801  df-fn 5321  df-f 5322  df-womni 7339
This theorem is referenced by:  iswomnimap  7341  omniwomnimkv  7342
  Copyright terms: Public domain W3C validator