| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iswomni | GIF version | ||
| Description: The predicate of being weakly omniscient. (Contributed by Jim Kingdon, 9-Jun-2024.) |
| Ref | Expression |
|---|---|
| iswomni | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ WOmni ↔ ∀𝑓(𝑓:𝐴⟶2o → DECID ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feq2 5415 | . . . 4 ⊢ (𝑦 = 𝐴 → (𝑓:𝑦⟶2o ↔ 𝑓:𝐴⟶2o)) | |
| 2 | raleq 2703 | . . . . 5 ⊢ (𝑦 = 𝐴 → (∀𝑥 ∈ 𝑦 (𝑓‘𝑥) = 1o ↔ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) | |
| 3 | 2 | dcbid 840 | . . . 4 ⊢ (𝑦 = 𝐴 → (DECID ∀𝑥 ∈ 𝑦 (𝑓‘𝑥) = 1o ↔ DECID ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) |
| 4 | 1, 3 | imbi12d 234 | . . 3 ⊢ (𝑦 = 𝐴 → ((𝑓:𝑦⟶2o → DECID ∀𝑥 ∈ 𝑦 (𝑓‘𝑥) = 1o) ↔ (𝑓:𝐴⟶2o → DECID ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o))) |
| 5 | 4 | albidv 1848 | . 2 ⊢ (𝑦 = 𝐴 → (∀𝑓(𝑓:𝑦⟶2o → DECID ∀𝑥 ∈ 𝑦 (𝑓‘𝑥) = 1o) ↔ ∀𝑓(𝑓:𝐴⟶2o → DECID ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o))) |
| 6 | df-womni 7273 | . 2 ⊢ WOmni = {𝑦 ∣ ∀𝑓(𝑓:𝑦⟶2o → DECID ∀𝑥 ∈ 𝑦 (𝑓‘𝑥) = 1o)} | |
| 7 | 5, 6 | elab2g 2921 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ WOmni ↔ ∀𝑓(𝑓:𝐴⟶2o → DECID ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 DECID wdc 836 ∀wal 1371 = wceq 1373 ∈ wcel 2177 ∀wral 2485 ⟶wf 5272 ‘cfv 5276 1oc1o 6502 2oc2o 6503 WOmnicwomni 7272 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-v 2775 df-fn 5279 df-f 5280 df-womni 7273 |
| This theorem is referenced by: iswomnimap 7275 omniwomnimkv 7276 |
| Copyright terms: Public domain | W3C validator |