| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iswomni | GIF version | ||
| Description: The predicate of being weakly omniscient. (Contributed by Jim Kingdon, 9-Jun-2024.) |
| Ref | Expression |
|---|---|
| iswomni | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ WOmni ↔ ∀𝑓(𝑓:𝐴⟶2o → DECID ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feq2 5391 | . . . 4 ⊢ (𝑦 = 𝐴 → (𝑓:𝑦⟶2o ↔ 𝑓:𝐴⟶2o)) | |
| 2 | raleq 2693 | . . . . 5 ⊢ (𝑦 = 𝐴 → (∀𝑥 ∈ 𝑦 (𝑓‘𝑥) = 1o ↔ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) | |
| 3 | 2 | dcbid 839 | . . . 4 ⊢ (𝑦 = 𝐴 → (DECID ∀𝑥 ∈ 𝑦 (𝑓‘𝑥) = 1o ↔ DECID ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o)) |
| 4 | 1, 3 | imbi12d 234 | . . 3 ⊢ (𝑦 = 𝐴 → ((𝑓:𝑦⟶2o → DECID ∀𝑥 ∈ 𝑦 (𝑓‘𝑥) = 1o) ↔ (𝑓:𝐴⟶2o → DECID ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o))) |
| 5 | 4 | albidv 1838 | . 2 ⊢ (𝑦 = 𝐴 → (∀𝑓(𝑓:𝑦⟶2o → DECID ∀𝑥 ∈ 𝑦 (𝑓‘𝑥) = 1o) ↔ ∀𝑓(𝑓:𝐴⟶2o → DECID ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o))) |
| 6 | df-womni 7230 | . 2 ⊢ WOmni = {𝑦 ∣ ∀𝑓(𝑓:𝑦⟶2o → DECID ∀𝑥 ∈ 𝑦 (𝑓‘𝑥) = 1o)} | |
| 7 | 5, 6 | elab2g 2911 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ WOmni ↔ ∀𝑓(𝑓:𝐴⟶2o → DECID ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 DECID wdc 835 ∀wal 1362 = wceq 1364 ∈ wcel 2167 ∀wral 2475 ⟶wf 5254 ‘cfv 5258 1oc1o 6467 2oc2o 6468 WOmnicwomni 7229 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-v 2765 df-fn 5261 df-f 5262 df-womni 7230 |
| This theorem is referenced by: iswomnimap 7232 omniwomnimkv 7233 |
| Copyright terms: Public domain | W3C validator |