ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iswomni GIF version

Theorem iswomni 7129
Description: The predicate of being weakly omniscient. (Contributed by Jim Kingdon, 9-Jun-2024.)
Assertion
Ref Expression
iswomni (𝐴𝑉 → (𝐴 ∈ WOmni ↔ ∀𝑓(𝑓:𝐴⟶2oDECID𝑥𝐴 (𝑓𝑥) = 1o)))
Distinct variable group:   𝐴,𝑓,𝑥
Allowed substitution hints:   𝑉(𝑥,𝑓)

Proof of Theorem iswomni
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 feq2 5321 . . . 4 (𝑦 = 𝐴 → (𝑓:𝑦⟶2o𝑓:𝐴⟶2o))
2 raleq 2661 . . . . 5 (𝑦 = 𝐴 → (∀𝑥𝑦 (𝑓𝑥) = 1o ↔ ∀𝑥𝐴 (𝑓𝑥) = 1o))
32dcbid 828 . . . 4 (𝑦 = 𝐴 → (DECID𝑥𝑦 (𝑓𝑥) = 1oDECID𝑥𝐴 (𝑓𝑥) = 1o))
41, 3imbi12d 233 . . 3 (𝑦 = 𝐴 → ((𝑓:𝑦⟶2oDECID𝑥𝑦 (𝑓𝑥) = 1o) ↔ (𝑓:𝐴⟶2oDECID𝑥𝐴 (𝑓𝑥) = 1o)))
54albidv 1812 . 2 (𝑦 = 𝐴 → (∀𝑓(𝑓:𝑦⟶2oDECID𝑥𝑦 (𝑓𝑥) = 1o) ↔ ∀𝑓(𝑓:𝐴⟶2oDECID𝑥𝐴 (𝑓𝑥) = 1o)))
6 df-womni 7128 . 2 WOmni = {𝑦 ∣ ∀𝑓(𝑓:𝑦⟶2oDECID𝑥𝑦 (𝑓𝑥) = 1o)}
75, 6elab2g 2873 1 (𝐴𝑉 → (𝐴 ∈ WOmni ↔ ∀𝑓(𝑓:𝐴⟶2oDECID𝑥𝐴 (𝑓𝑥) = 1o)))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  DECID wdc 824  wal 1341   = wceq 1343  wcel 2136  wral 2444  wf 5184  cfv 5188  1oc1o 6377  2oc2o 6378  WOmnicwomni 7127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-dc 825  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-v 2728  df-fn 5191  df-f 5192  df-womni 7128
This theorem is referenced by:  iswomnimap  7130  omniwomnimkv  7131
  Copyright terms: Public domain W3C validator