Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > iswomnimap | Unicode version |
Description: The predicate of being weakly omniscient stated in terms of set exponentiation. (Contributed by Jim Kingdon, 9-Jun-2024.) |
Ref | Expression |
---|---|
iswomnimap | WOmni DECID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iswomni 7091 | . . 3 WOmni DECID | |
2 | 2onn 6461 | . . . . . 6 | |
3 | elmapg 6599 | . . . . . 6 | |
4 | 2, 3 | mpan 421 | . . . . 5 |
5 | 4 | imbi1d 230 | . . . 4 DECID DECID |
6 | 5 | albidv 1804 | . . 3 DECID DECID |
7 | 1, 6 | bitr4d 190 | . 2 WOmni DECID |
8 | df-ral 2440 | . 2 DECID DECID | |
9 | 7, 8 | bitr4di 197 | 1 WOmni DECID |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 DECID wdc 820 wal 1333 wceq 1335 wcel 2128 wral 2435 com 4547 wf 5163 cfv 5167 (class class class)co 5818 c1o 6350 c2o 6351 cmap 6586 WOmnicwomni 7089 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-nul 4090 ax-pow 4134 ax-pr 4168 ax-un 4392 ax-setind 4494 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-ral 2440 df-rex 2441 df-v 2714 df-sbc 2938 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-br 3966 df-opab 4026 df-id 4252 df-suc 4330 df-iom 4548 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-rn 4594 df-iota 5132 df-fun 5169 df-fn 5170 df-f 5171 df-fv 5175 df-ov 5821 df-oprab 5822 df-mpo 5823 df-1o 6357 df-2o 6358 df-map 6588 df-womni 7090 |
This theorem is referenced by: enwomnilem 7095 iswomninnlem 13582 |
Copyright terms: Public domain | W3C validator |