ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iswomnimap Unicode version

Theorem iswomnimap 7329
Description: The predicate of being weakly omniscient stated in terms of set exponentiation. (Contributed by Jim Kingdon, 9-Jun-2024.)
Assertion
Ref Expression
iswomnimap  |-  ( A  e.  V  ->  ( A  e. WOmni  <->  A. f  e.  ( 2o  ^m  A )DECID  A. x  e.  A  (
f `  x )  =  1o ) )
Distinct variable groups:    A, f, x   
f, V
Allowed substitution hint:    V( x)

Proof of Theorem iswomnimap
StepHypRef Expression
1 iswomni 7328 . . 3  |-  ( A  e.  V  ->  ( A  e. WOmni  <->  A. f ( f : A --> 2o  -> DECID  A. x  e.  A  ( f `  x )  =  1o ) ) )
2 2onn 6665 . . . . . 6  |-  2o  e.  om
3 elmapg 6806 . . . . . 6  |-  ( ( 2o  e.  om  /\  A  e.  V )  ->  ( f  e.  ( 2o  ^m  A )  <-> 
f : A --> 2o ) )
42, 3mpan 424 . . . . 5  |-  ( A  e.  V  ->  (
f  e.  ( 2o 
^m  A )  <->  f : A
--> 2o ) )
54imbi1d 231 . . . 4  |-  ( A  e.  V  ->  (
( f  e.  ( 2o  ^m  A )  -> DECID  A. x  e.  A  ( f `  x
)  =  1o )  <-> 
( f : A --> 2o  -> DECID  A. x  e.  A  ( f `  x
)  =  1o ) ) )
65albidv 1870 . . 3  |-  ( A  e.  V  ->  ( A. f ( f  e.  ( 2o  ^m  A
)  -> DECID  A. x  e.  A  ( f `  x
)  =  1o )  <->  A. f ( f : A --> 2o  -> DECID  A. x  e.  A  ( f `  x
)  =  1o ) ) )
71, 6bitr4d 191 . 2  |-  ( A  e.  V  ->  ( A  e. WOmni  <->  A. f ( f  e.  ( 2o  ^m  A )  -> DECID  A. x  e.  A  ( f `  x
)  =  1o ) ) )
8 df-ral 2513 . 2  |-  ( A. f  e.  ( 2o  ^m  A )DECID 
A. x  e.  A  ( f `  x
)  =  1o  <->  A. f
( f  e.  ( 2o  ^m  A )  -> DECID  A. x  e.  A  ( f `  x
)  =  1o ) )
97, 8bitr4di 198 1  |-  ( A  e.  V  ->  ( A  e. WOmni  <->  A. f  e.  ( 2o  ^m  A )DECID  A. x  e.  A  (
f `  x )  =  1o ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105  DECID wdc 839   A.wal 1393    = wceq 1395    e. wcel 2200   A.wral 2508   omcom 4681   -->wf 5313   ` cfv 5317  (class class class)co 6000   1oc1o 6553   2oc2o 6554    ^m cmap 6793  WOmnicwomni 7326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-id 4383  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1o 6560  df-2o 6561  df-map 6795  df-womni 7327
This theorem is referenced by:  enwomnilem  7332  nninfdcinf  7334  nninfwlporlem  7336  nninfwlpoim  7342  nninfinfwlpo  7343  iswomninnlem  16376
  Copyright terms: Public domain W3C validator