ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iswomnimap Unicode version

Theorem iswomnimap 7142
Description: The predicate of being weakly omniscient stated in terms of set exponentiation. (Contributed by Jim Kingdon, 9-Jun-2024.)
Assertion
Ref Expression
iswomnimap  |-  ( A  e.  V  ->  ( A  e. WOmni  <->  A. f  e.  ( 2o  ^m  A )DECID  A. x  e.  A  (
f `  x )  =  1o ) )
Distinct variable groups:    A, f, x   
f, V
Allowed substitution hint:    V( x)

Proof of Theorem iswomnimap
StepHypRef Expression
1 iswomni 7141 . . 3  |-  ( A  e.  V  ->  ( A  e. WOmni  <->  A. f ( f : A --> 2o  -> DECID  A. x  e.  A  ( f `  x )  =  1o ) ) )
2 2onn 6500 . . . . . 6  |-  2o  e.  om
3 elmapg 6639 . . . . . 6  |-  ( ( 2o  e.  om  /\  A  e.  V )  ->  ( f  e.  ( 2o  ^m  A )  <-> 
f : A --> 2o ) )
42, 3mpan 422 . . . . 5  |-  ( A  e.  V  ->  (
f  e.  ( 2o 
^m  A )  <->  f : A
--> 2o ) )
54imbi1d 230 . . . 4  |-  ( A  e.  V  ->  (
( f  e.  ( 2o  ^m  A )  -> DECID  A. x  e.  A  ( f `  x
)  =  1o )  <-> 
( f : A --> 2o  -> DECID  A. x  e.  A  ( f `  x
)  =  1o ) ) )
65albidv 1817 . . 3  |-  ( A  e.  V  ->  ( A. f ( f  e.  ( 2o  ^m  A
)  -> DECID  A. x  e.  A  ( f `  x
)  =  1o )  <->  A. f ( f : A --> 2o  -> DECID  A. x  e.  A  ( f `  x
)  =  1o ) ) )
71, 6bitr4d 190 . 2  |-  ( A  e.  V  ->  ( A  e. WOmni  <->  A. f ( f  e.  ( 2o  ^m  A )  -> DECID  A. x  e.  A  ( f `  x
)  =  1o ) ) )
8 df-ral 2453 . 2  |-  ( A. f  e.  ( 2o  ^m  A )DECID 
A. x  e.  A  ( f `  x
)  =  1o  <->  A. f
( f  e.  ( 2o  ^m  A )  -> DECID  A. x  e.  A  ( f `  x
)  =  1o ) )
97, 8bitr4di 197 1  |-  ( A  e.  V  ->  ( A  e. WOmni  <->  A. f  e.  ( 2o  ^m  A )DECID  A. x  e.  A  (
f `  x )  =  1o ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104  DECID wdc 829   A.wal 1346    = wceq 1348    e. wcel 2141   A.wral 2448   omcom 4574   -->wf 5194   ` cfv 5198  (class class class)co 5853   1oc1o 6388   2oc2o 6389    ^m cmap 6626  WOmnicwomni 7139
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-id 4278  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1o 6395  df-2o 6396  df-map 6628  df-womni 7140
This theorem is referenced by:  enwomnilem  7145  nninfdcinf  7147  nninfwlporlem  7149  nninfwlpoim  7154  iswomninnlem  14081
  Copyright terms: Public domain W3C validator