ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iswomnimap Unicode version

Theorem iswomnimap 7164
Description: The predicate of being weakly omniscient stated in terms of set exponentiation. (Contributed by Jim Kingdon, 9-Jun-2024.)
Assertion
Ref Expression
iswomnimap  |-  ( A  e.  V  ->  ( A  e. WOmni  <->  A. f  e.  ( 2o  ^m  A )DECID  A. x  e.  A  (
f `  x )  =  1o ) )
Distinct variable groups:    A, f, x   
f, V
Allowed substitution hint:    V( x)

Proof of Theorem iswomnimap
StepHypRef Expression
1 iswomni 7163 . . 3  |-  ( A  e.  V  ->  ( A  e. WOmni  <->  A. f ( f : A --> 2o  -> DECID  A. x  e.  A  ( f `  x )  =  1o ) ) )
2 2onn 6522 . . . . . 6  |-  2o  e.  om
3 elmapg 6661 . . . . . 6  |-  ( ( 2o  e.  om  /\  A  e.  V )  ->  ( f  e.  ( 2o  ^m  A )  <-> 
f : A --> 2o ) )
42, 3mpan 424 . . . . 5  |-  ( A  e.  V  ->  (
f  e.  ( 2o 
^m  A )  <->  f : A
--> 2o ) )
54imbi1d 231 . . . 4  |-  ( A  e.  V  ->  (
( f  e.  ( 2o  ^m  A )  -> DECID  A. x  e.  A  ( f `  x
)  =  1o )  <-> 
( f : A --> 2o  -> DECID  A. x  e.  A  ( f `  x
)  =  1o ) ) )
65albidv 1824 . . 3  |-  ( A  e.  V  ->  ( A. f ( f  e.  ( 2o  ^m  A
)  -> DECID  A. x  e.  A  ( f `  x
)  =  1o )  <->  A. f ( f : A --> 2o  -> DECID  A. x  e.  A  ( f `  x
)  =  1o ) ) )
71, 6bitr4d 191 . 2  |-  ( A  e.  V  ->  ( A  e. WOmni  <->  A. f ( f  e.  ( 2o  ^m  A )  -> DECID  A. x  e.  A  ( f `  x
)  =  1o ) ) )
8 df-ral 2460 . 2  |-  ( A. f  e.  ( 2o  ^m  A )DECID 
A. x  e.  A  ( f `  x
)  =  1o  <->  A. f
( f  e.  ( 2o  ^m  A )  -> DECID  A. x  e.  A  ( f `  x
)  =  1o ) )
97, 8bitr4di 198 1  |-  ( A  e.  V  ->  ( A  e. WOmni  <->  A. f  e.  ( 2o  ^m  A )DECID  A. x  e.  A  (
f `  x )  =  1o ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105  DECID wdc 834   A.wal 1351    = wceq 1353    e. wcel 2148   A.wral 2455   omcom 4590   -->wf 5213   ` cfv 5217  (class class class)co 5875   1oc1o 6410   2oc2o 6411    ^m cmap 6648  WOmnicwomni 7161
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-v 2740  df-sbc 2964  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-br 4005  df-opab 4066  df-id 4294  df-suc 4372  df-iom 4591  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-fv 5225  df-ov 5878  df-oprab 5879  df-mpo 5880  df-1o 6417  df-2o 6418  df-map 6650  df-womni 7162
This theorem is referenced by:  enwomnilem  7167  nninfdcinf  7169  nninfwlporlem  7171  nninfwlpoim  7176  iswomninnlem  14800
  Copyright terms: Public domain W3C validator