| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iswomnimap | Unicode version | ||
| Description: The predicate of being weakly omniscient stated in terms of set exponentiation. (Contributed by Jim Kingdon, 9-Jun-2024.) |
| Ref | Expression |
|---|---|
| iswomnimap |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iswomni 7267 |
. . 3
| |
| 2 | 2onn 6607 |
. . . . . 6
| |
| 3 | elmapg 6748 |
. . . . . 6
| |
| 4 | 2, 3 | mpan 424 |
. . . . 5
|
| 5 | 4 | imbi1d 231 |
. . . 4
|
| 6 | 5 | albidv 1847 |
. . 3
|
| 7 | 1, 6 | bitr4d 191 |
. 2
|
| 8 | df-ral 2489 |
. 2
| |
| 9 | 7, 8 | bitr4di 198 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4045 df-opab 4106 df-id 4340 df-suc 4418 df-iom 4639 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-fv 5279 df-ov 5947 df-oprab 5948 df-mpo 5949 df-1o 6502 df-2o 6503 df-map 6737 df-womni 7266 |
| This theorem is referenced by: enwomnilem 7271 nninfdcinf 7273 nninfwlporlem 7275 nninfwlpoim 7281 nninfinfwlpo 7282 iswomninnlem 15988 |
| Copyright terms: Public domain | W3C validator |