ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iswomnimap Unicode version

Theorem iswomnimap 7268
Description: The predicate of being weakly omniscient stated in terms of set exponentiation. (Contributed by Jim Kingdon, 9-Jun-2024.)
Assertion
Ref Expression
iswomnimap  |-  ( A  e.  V  ->  ( A  e. WOmni  <->  A. f  e.  ( 2o  ^m  A )DECID  A. x  e.  A  (
f `  x )  =  1o ) )
Distinct variable groups:    A, f, x   
f, V
Allowed substitution hint:    V( x)

Proof of Theorem iswomnimap
StepHypRef Expression
1 iswomni 7267 . . 3  |-  ( A  e.  V  ->  ( A  e. WOmni  <->  A. f ( f : A --> 2o  -> DECID  A. x  e.  A  ( f `  x )  =  1o ) ) )
2 2onn 6607 . . . . . 6  |-  2o  e.  om
3 elmapg 6748 . . . . . 6  |-  ( ( 2o  e.  om  /\  A  e.  V )  ->  ( f  e.  ( 2o  ^m  A )  <-> 
f : A --> 2o ) )
42, 3mpan 424 . . . . 5  |-  ( A  e.  V  ->  (
f  e.  ( 2o 
^m  A )  <->  f : A
--> 2o ) )
54imbi1d 231 . . . 4  |-  ( A  e.  V  ->  (
( f  e.  ( 2o  ^m  A )  -> DECID  A. x  e.  A  ( f `  x
)  =  1o )  <-> 
( f : A --> 2o  -> DECID  A. x  e.  A  ( f `  x
)  =  1o ) ) )
65albidv 1847 . . 3  |-  ( A  e.  V  ->  ( A. f ( f  e.  ( 2o  ^m  A
)  -> DECID  A. x  e.  A  ( f `  x
)  =  1o )  <->  A. f ( f : A --> 2o  -> DECID  A. x  e.  A  ( f `  x
)  =  1o ) ) )
71, 6bitr4d 191 . 2  |-  ( A  e.  V  ->  ( A  e. WOmni  <->  A. f ( f  e.  ( 2o  ^m  A )  -> DECID  A. x  e.  A  ( f `  x
)  =  1o ) ) )
8 df-ral 2489 . 2  |-  ( A. f  e.  ( 2o  ^m  A )DECID 
A. x  e.  A  ( f `  x
)  =  1o  <->  A. f
( f  e.  ( 2o  ^m  A )  -> DECID  A. x  e.  A  ( f `  x
)  =  1o ) )
97, 8bitr4di 198 1  |-  ( A  e.  V  ->  ( A  e. WOmni  <->  A. f  e.  ( 2o  ^m  A )DECID  A. x  e.  A  (
f `  x )  =  1o ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105  DECID wdc 836   A.wal 1371    = wceq 1373    e. wcel 2176   A.wral 2484   omcom 4638   -->wf 5267   ` cfv 5271  (class class class)co 5944   1oc1o 6495   2oc2o 6496    ^m cmap 6735  WOmnicwomni 7265
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4045  df-opab 4106  df-id 4340  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1o 6502  df-2o 6503  df-map 6737  df-womni 7266
This theorem is referenced by:  enwomnilem  7271  nninfdcinf  7273  nninfwlporlem  7275  nninfwlpoim  7281  nninfinfwlpo  7282  iswomninnlem  15988
  Copyright terms: Public domain W3C validator