ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iuncom Unicode version

Theorem iuncom 3893
Description: Commutation of indexed unions. (Contributed by NM, 18-Dec-2008.)
Assertion
Ref Expression
iuncom  |-  U_ x  e.  A  U_ y  e.  B  C  =  U_ y  e.  B  U_ x  e.  A  C
Distinct variable groups:    y, A    x, B    x, y
Allowed substitution hints:    A( x)    B( y)    C( x, y)

Proof of Theorem iuncom
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 rexcom 2641 . . . 4  |-  ( E. x  e.  A  E. y  e.  B  z  e.  C  <->  E. y  e.  B  E. x  e.  A  z  e.  C )
2 eliun 3891 . . . . 5  |-  ( z  e.  U_ y  e.  B  C  <->  E. y  e.  B  z  e.  C )
32rexbii 2484 . . . 4  |-  ( E. x  e.  A  z  e.  U_ y  e.  B  C  <->  E. x  e.  A  E. y  e.  B  z  e.  C )
4 eliun 3891 . . . . 5  |-  ( z  e.  U_ x  e.  A  C  <->  E. x  e.  A  z  e.  C )
54rexbii 2484 . . . 4  |-  ( E. y  e.  B  z  e.  U_ x  e.  A  C  <->  E. y  e.  B  E. x  e.  A  z  e.  C )
61, 3, 53bitr4i 212 . . 3  |-  ( E. x  e.  A  z  e.  U_ y  e.  B  C  <->  E. y  e.  B  z  e.  U_ x  e.  A  C
)
7 eliun 3891 . . 3  |-  ( z  e.  U_ x  e.  A  U_ y  e.  B  C  <->  E. x  e.  A  z  e.  U_ y  e.  B  C
)
8 eliun 3891 . . 3  |-  ( z  e.  U_ y  e.  B  U_ x  e.  A  C  <->  E. y  e.  B  z  e.  U_ x  e.  A  C
)
96, 7, 83bitr4i 212 . 2  |-  ( z  e.  U_ x  e.  A  U_ y  e.  B  C  <->  z  e.  U_ y  e.  B  U_ x  e.  A  C
)
109eqriv 2174 1  |-  U_ x  e.  A  U_ y  e.  B  C  =  U_ y  e.  B  U_ x  e.  A  C
Colors of variables: wff set class
Syntax hints:    = wceq 1353    e. wcel 2148   E.wrex 2456   U_ciun 3887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2740  df-iun 3889
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator