ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iuncom Unicode version

Theorem iuncom 3879
Description: Commutation of indexed unions. (Contributed by NM, 18-Dec-2008.)
Assertion
Ref Expression
iuncom  |-  U_ x  e.  A  U_ y  e.  B  C  =  U_ y  e.  B  U_ x  e.  A  C
Distinct variable groups:    y, A    x, B    x, y
Allowed substitution hints:    A( x)    B( y)    C( x, y)

Proof of Theorem iuncom
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 rexcom 2634 . . . 4  |-  ( E. x  e.  A  E. y  e.  B  z  e.  C  <->  E. y  e.  B  E. x  e.  A  z  e.  C )
2 eliun 3877 . . . . 5  |-  ( z  e.  U_ y  e.  B  C  <->  E. y  e.  B  z  e.  C )
32rexbii 2477 . . . 4  |-  ( E. x  e.  A  z  e.  U_ y  e.  B  C  <->  E. x  e.  A  E. y  e.  B  z  e.  C )
4 eliun 3877 . . . . 5  |-  ( z  e.  U_ x  e.  A  C  <->  E. x  e.  A  z  e.  C )
54rexbii 2477 . . . 4  |-  ( E. y  e.  B  z  e.  U_ x  e.  A  C  <->  E. y  e.  B  E. x  e.  A  z  e.  C )
61, 3, 53bitr4i 211 . . 3  |-  ( E. x  e.  A  z  e.  U_ y  e.  B  C  <->  E. y  e.  B  z  e.  U_ x  e.  A  C
)
7 eliun 3877 . . 3  |-  ( z  e.  U_ x  e.  A  U_ y  e.  B  C  <->  E. x  e.  A  z  e.  U_ y  e.  B  C
)
8 eliun 3877 . . 3  |-  ( z  e.  U_ y  e.  B  U_ x  e.  A  C  <->  E. y  e.  B  z  e.  U_ x  e.  A  C
)
96, 7, 83bitr4i 211 . 2  |-  ( z  e.  U_ x  e.  A  U_ y  e.  B  C  <->  z  e.  U_ y  e.  B  U_ x  e.  A  C
)
109eqriv 2167 1  |-  U_ x  e.  A  U_ y  e.  B  C  =  U_ y  e.  B  U_ x  e.  A  C
Colors of variables: wff set class
Syntax hints:    = wceq 1348    e. wcel 2141   E.wrex 2449   U_ciun 3873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-iun 3875
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator