ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iuncom Unicode version

Theorem iuncom 3950
Description: Commutation of indexed unions. (Contributed by NM, 18-Dec-2008.)
Assertion
Ref Expression
iuncom  |-  U_ x  e.  A  U_ y  e.  B  C  =  U_ y  e.  B  U_ x  e.  A  C
Distinct variable groups:    y, A    x, B    x, y
Allowed substitution hints:    A( x)    B( y)    C( x, y)

Proof of Theorem iuncom
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 rexcom 2675 . . . 4  |-  ( E. x  e.  A  E. y  e.  B  z  e.  C  <->  E. y  e.  B  E. x  e.  A  z  e.  C )
2 eliun 3948 . . . . 5  |-  ( z  e.  U_ y  e.  B  C  <->  E. y  e.  B  z  e.  C )
32rexbii 2517 . . . 4  |-  ( E. x  e.  A  z  e.  U_ y  e.  B  C  <->  E. x  e.  A  E. y  e.  B  z  e.  C )
4 eliun 3948 . . . . 5  |-  ( z  e.  U_ x  e.  A  C  <->  E. x  e.  A  z  e.  C )
54rexbii 2517 . . . 4  |-  ( E. y  e.  B  z  e.  U_ x  e.  A  C  <->  E. y  e.  B  E. x  e.  A  z  e.  C )
61, 3, 53bitr4i 212 . . 3  |-  ( E. x  e.  A  z  e.  U_ y  e.  B  C  <->  E. y  e.  B  z  e.  U_ x  e.  A  C
)
7 eliun 3948 . . 3  |-  ( z  e.  U_ x  e.  A  U_ y  e.  B  C  <->  E. x  e.  A  z  e.  U_ y  e.  B  C
)
8 eliun 3948 . . 3  |-  ( z  e.  U_ y  e.  B  U_ x  e.  A  C  <->  E. y  e.  B  z  e.  U_ x  e.  A  C
)
96, 7, 83bitr4i 212 . 2  |-  ( z  e.  U_ x  e.  A  U_ y  e.  B  C  <->  z  e.  U_ y  e.  B  U_ x  e.  A  C
)
109eqriv 2206 1  |-  U_ x  e.  A  U_ y  e.  B  C  =  U_ y  e.  B  U_ x  e.  A  C
Colors of variables: wff set class
Syntax hints:    = wceq 1375    e. wcel 2180   E.wrex 2489   U_ciun 3944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-ext 2191
This theorem depends on definitions:  df-bi 117  df-tru 1378  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493  df-rex 2494  df-v 2781  df-iun 3946
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator