Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > iuncom | GIF version |
Description: Commutation of indexed unions. (Contributed by NM, 18-Dec-2008.) |
Ref | Expression |
---|---|
iuncom | ⊢ ∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 𝐶 = ∪ 𝑦 ∈ 𝐵 ∪ 𝑥 ∈ 𝐴 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexcom 2630 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 ∈ 𝐶 ↔ ∃𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐶) | |
2 | eliun 3870 | . . . . 5 ⊢ (𝑧 ∈ ∪ 𝑦 ∈ 𝐵 𝐶 ↔ ∃𝑦 ∈ 𝐵 𝑧 ∈ 𝐶) | |
3 | 2 | rexbii 2473 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝑧 ∈ ∪ 𝑦 ∈ 𝐵 𝐶 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 ∈ 𝐶) |
4 | eliun 3870 | . . . . 5 ⊢ (𝑧 ∈ ∪ 𝑥 ∈ 𝐴 𝐶 ↔ ∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐶) | |
5 | 4 | rexbii 2473 | . . . 4 ⊢ (∃𝑦 ∈ 𝐵 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 𝐶 ↔ ∃𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐶) |
6 | 1, 3, 5 | 3bitr4i 211 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝑧 ∈ ∪ 𝑦 ∈ 𝐵 𝐶 ↔ ∃𝑦 ∈ 𝐵 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 𝐶) |
7 | eliun 3870 | . . 3 ⊢ (𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 𝐶 ↔ ∃𝑥 ∈ 𝐴 𝑧 ∈ ∪ 𝑦 ∈ 𝐵 𝐶) | |
8 | eliun 3870 | . . 3 ⊢ (𝑧 ∈ ∪ 𝑦 ∈ 𝐵 ∪ 𝑥 ∈ 𝐴 𝐶 ↔ ∃𝑦 ∈ 𝐵 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 𝐶) | |
9 | 6, 7, 8 | 3bitr4i 211 | . 2 ⊢ (𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 𝐶 ↔ 𝑧 ∈ ∪ 𝑦 ∈ 𝐵 ∪ 𝑥 ∈ 𝐴 𝐶) |
10 | 9 | eqriv 2162 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 𝐶 = ∪ 𝑦 ∈ 𝐵 ∪ 𝑥 ∈ 𝐴 𝐶 |
Colors of variables: wff set class |
Syntax hints: = wceq 1343 ∈ wcel 2136 ∃wrex 2445 ∪ ciun 3866 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-iun 3868 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |