ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iuncom GIF version

Theorem iuncom 3879
Description: Commutation of indexed unions. (Contributed by NM, 18-Dec-2008.)
Assertion
Ref Expression
iuncom 𝑥𝐴 𝑦𝐵 𝐶 = 𝑦𝐵 𝑥𝐴 𝐶
Distinct variable groups:   𝑦,𝐴   𝑥,𝐵   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑦)   𝐶(𝑥,𝑦)

Proof of Theorem iuncom
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 rexcom 2634 . . . 4 (∃𝑥𝐴𝑦𝐵 𝑧𝐶 ↔ ∃𝑦𝐵𝑥𝐴 𝑧𝐶)
2 eliun 3877 . . . . 5 (𝑧 𝑦𝐵 𝐶 ↔ ∃𝑦𝐵 𝑧𝐶)
32rexbii 2477 . . . 4 (∃𝑥𝐴 𝑧 𝑦𝐵 𝐶 ↔ ∃𝑥𝐴𝑦𝐵 𝑧𝐶)
4 eliun 3877 . . . . 5 (𝑧 𝑥𝐴 𝐶 ↔ ∃𝑥𝐴 𝑧𝐶)
54rexbii 2477 . . . 4 (∃𝑦𝐵 𝑧 𝑥𝐴 𝐶 ↔ ∃𝑦𝐵𝑥𝐴 𝑧𝐶)
61, 3, 53bitr4i 211 . . 3 (∃𝑥𝐴 𝑧 𝑦𝐵 𝐶 ↔ ∃𝑦𝐵 𝑧 𝑥𝐴 𝐶)
7 eliun 3877 . . 3 (𝑧 𝑥𝐴 𝑦𝐵 𝐶 ↔ ∃𝑥𝐴 𝑧 𝑦𝐵 𝐶)
8 eliun 3877 . . 3 (𝑧 𝑦𝐵 𝑥𝐴 𝐶 ↔ ∃𝑦𝐵 𝑧 𝑥𝐴 𝐶)
96, 7, 83bitr4i 211 . 2 (𝑧 𝑥𝐴 𝑦𝐵 𝐶𝑧 𝑦𝐵 𝑥𝐴 𝐶)
109eqriv 2167 1 𝑥𝐴 𝑦𝐵 𝐶 = 𝑦𝐵 𝑥𝐴 𝐶
Colors of variables: wff set class
Syntax hints:   = wceq 1348  wcel 2141  wrex 2449   ciun 3873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-iun 3875
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator