ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iuncom GIF version

Theorem iuncom 3922
Description: Commutation of indexed unions. (Contributed by NM, 18-Dec-2008.)
Assertion
Ref Expression
iuncom 𝑥𝐴 𝑦𝐵 𝐶 = 𝑦𝐵 𝑥𝐴 𝐶
Distinct variable groups:   𝑦,𝐴   𝑥,𝐵   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑦)   𝐶(𝑥,𝑦)

Proof of Theorem iuncom
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 rexcom 2661 . . . 4 (∃𝑥𝐴𝑦𝐵 𝑧𝐶 ↔ ∃𝑦𝐵𝑥𝐴 𝑧𝐶)
2 eliun 3920 . . . . 5 (𝑧 𝑦𝐵 𝐶 ↔ ∃𝑦𝐵 𝑧𝐶)
32rexbii 2504 . . . 4 (∃𝑥𝐴 𝑧 𝑦𝐵 𝐶 ↔ ∃𝑥𝐴𝑦𝐵 𝑧𝐶)
4 eliun 3920 . . . . 5 (𝑧 𝑥𝐴 𝐶 ↔ ∃𝑥𝐴 𝑧𝐶)
54rexbii 2504 . . . 4 (∃𝑦𝐵 𝑧 𝑥𝐴 𝐶 ↔ ∃𝑦𝐵𝑥𝐴 𝑧𝐶)
61, 3, 53bitr4i 212 . . 3 (∃𝑥𝐴 𝑧 𝑦𝐵 𝐶 ↔ ∃𝑦𝐵 𝑧 𝑥𝐴 𝐶)
7 eliun 3920 . . 3 (𝑧 𝑥𝐴 𝑦𝐵 𝐶 ↔ ∃𝑥𝐴 𝑧 𝑦𝐵 𝐶)
8 eliun 3920 . . 3 (𝑧 𝑦𝐵 𝑥𝐴 𝐶 ↔ ∃𝑦𝐵 𝑧 𝑥𝐴 𝐶)
96, 7, 83bitr4i 212 . 2 (𝑧 𝑥𝐴 𝑦𝐵 𝐶𝑧 𝑦𝐵 𝑥𝐴 𝐶)
109eqriv 2193 1 𝑥𝐴 𝑦𝐵 𝐶 = 𝑦𝐵 𝑥𝐴 𝐶
Colors of variables: wff set class
Syntax hints:   = wceq 1364  wcel 2167  wrex 2476   ciun 3916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-iun 3918
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator