ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexcom Unicode version

Theorem rexcom 2695
Description: Commutation of restricted quantifiers. (Contributed by NM, 19-Nov-1995.) (Revised by Mario Carneiro, 14-Oct-2016.)
Assertion
Ref Expression
rexcom  |-  ( E. x  e.  A  E. y  e.  B  ph  <->  E. y  e.  B  E. x  e.  A  ph )
Distinct variable groups:    x, y    x, B    y, A
Allowed substitution hints:    ph( x, y)    A( x)    B( y)

Proof of Theorem rexcom
StepHypRef Expression
1 nfcv 2372 . 2  |-  F/_ y A
2 nfcv 2372 . 2  |-  F/_ x B
31, 2rexcomf 2693 1  |-  ( E. x  e.  A  E. y  e.  B  ph  <->  E. y  e.  B  E. x  e.  A  ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 105   E.wrex 2509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514
This theorem is referenced by:  rexcom13  2697  rexcom4  2823  iuncom  3970  xpiundi  4776  addcomprg  7761  mulcomprg  7763  ltexprlemm  7783  caucvgprprlemexbt  7889  suplocexprlemml  7899  suplocexprlemmu  7901  qmulz  9814  elpq  9840  caubnd2  11623  sqrt2irr  12679  pythagtriplem19  12800
  Copyright terms: Public domain W3C validator