ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexcom Unicode version

Theorem rexcom 2672
Description: Commutation of restricted quantifiers. (Contributed by NM, 19-Nov-1995.) (Revised by Mario Carneiro, 14-Oct-2016.)
Assertion
Ref Expression
rexcom  |-  ( E. x  e.  A  E. y  e.  B  ph  <->  E. y  e.  B  E. x  e.  A  ph )
Distinct variable groups:    x, y    x, B    y, A
Allowed substitution hints:    ph( x, y)    A( x)    B( y)

Proof of Theorem rexcom
StepHypRef Expression
1 nfcv 2350 . 2  |-  F/_ y A
2 nfcv 2350 . 2  |-  F/_ x B
31, 2rexcomf 2670 1  |-  ( E. x  e.  A  E. y  e.  B  ph  <->  E. y  e.  B  E. x  e.  A  ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 105   E.wrex 2487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-cleq 2200  df-clel 2203  df-nfc 2339  df-rex 2492
This theorem is referenced by:  rexcom13  2674  rexcom4  2800  iuncom  3947  xpiundi  4751  addcomprg  7726  mulcomprg  7728  ltexprlemm  7748  caucvgprprlemexbt  7854  suplocexprlemml  7864  suplocexprlemmu  7866  qmulz  9779  elpq  9805  caubnd2  11543  sqrt2irr  12599  pythagtriplem19  12720
  Copyright terms: Public domain W3C validator