ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexcom Unicode version

Theorem rexcom 2670
Description: Commutation of restricted quantifiers. (Contributed by NM, 19-Nov-1995.) (Revised by Mario Carneiro, 14-Oct-2016.)
Assertion
Ref Expression
rexcom  |-  ( E. x  e.  A  E. y  e.  B  ph  <->  E. y  e.  B  E. x  e.  A  ph )
Distinct variable groups:    x, y    x, B    y, A
Allowed substitution hints:    ph( x, y)    A( x)    B( y)

Proof of Theorem rexcom
StepHypRef Expression
1 nfcv 2348 . 2  |-  F/_ y A
2 nfcv 2348 . 2  |-  F/_ x B
31, 2rexcomf 2668 1  |-  ( E. x  e.  A  E. y  e.  B  ph  <->  E. y  e.  B  E. x  e.  A  ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 105   E.wrex 2485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-sb 1786  df-cleq 2198  df-clel 2201  df-nfc 2337  df-rex 2490
This theorem is referenced by:  rexcom13  2672  rexcom4  2795  iuncom  3933  xpiundi  4733  addcomprg  7691  mulcomprg  7693  ltexprlemm  7713  caucvgprprlemexbt  7819  suplocexprlemml  7829  suplocexprlemmu  7831  qmulz  9744  elpq  9770  caubnd2  11428  sqrt2irr  12484  pythagtriplem19  12605
  Copyright terms: Public domain W3C validator