ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  omv2 Unicode version

Theorem omv2 6520
Description: Value of ordinal multiplication. (Contributed by Jim Kingdon, 23-Aug-2019.)
Assertion
Ref Expression
omv2  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  .o  B
)  =  U_ x  e.  B  ( ( A  .o  x )  +o  A ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem omv2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 omfnex 6504 . . . 4  |-  ( A  e.  On  ->  (
y  e.  _V  |->  ( y  +o  A ) )  Fn  _V )
2 0elon 4424 . . . . 5  |-  (/)  e.  On
3 rdgival 6437 . . . . 5  |-  ( ( ( y  e.  _V  |->  ( y  +o  A
) )  Fn  _V  /\  (/)  e.  On  /\  B  e.  On )  ->  ( rec ( ( y  e. 
_V  |->  ( y  +o  A ) ) ,  (/) ) `  B )  =  ( (/)  u.  U_ x  e.  B  (
( y  e.  _V  |->  ( y  +o  A
) ) `  ( rec ( ( y  e. 
_V  |->  ( y  +o  A ) ) ,  (/) ) `  x ) ) ) )
42, 3mp3an2 1336 . . . 4  |-  ( ( ( y  e.  _V  |->  ( y  +o  A
) )  Fn  _V  /\  B  e.  On )  ->  ( rec (
( y  e.  _V  |->  ( y  +o  A
) ) ,  (/) ) `  B )  =  ( (/)  u.  U_ x  e.  B  (
( y  e.  _V  |->  ( y  +o  A
) ) `  ( rec ( ( y  e. 
_V  |->  ( y  +o  A ) ) ,  (/) ) `  x ) ) ) )
51, 4sylan 283 . . 3  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( rec ( ( y  e.  _V  |->  ( y  +o  A ) ) ,  (/) ) `  B )  =  (
(/)  u.  U_ x  e.  B  ( ( y  e.  _V  |->  ( y  +o  A ) ) `
 ( rec (
( y  e.  _V  |->  ( y  +o  A
) ) ,  (/) ) `  x )
) ) )
6 omv 6510 . . 3  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  .o  B
)  =  ( rec ( ( y  e. 
_V  |->  ( y  +o  A ) ) ,  (/) ) `  B ) )
7 onelon 4416 . . . . . . 7  |-  ( ( B  e.  On  /\  x  e.  B )  ->  x  e.  On )
8 omexg 6506 . . . . . . . . 9  |-  ( ( A  e.  On  /\  x  e.  On )  ->  ( A  .o  x
)  e.  _V )
9 omcl 6516 . . . . . . . . . 10  |-  ( ( A  e.  On  /\  x  e.  On )  ->  ( A  .o  x
)  e.  On )
10 simpl 109 . . . . . . . . . 10  |-  ( ( A  e.  On  /\  x  e.  On )  ->  A  e.  On )
11 oacl 6515 . . . . . . . . . 10  |-  ( ( ( A  .o  x
)  e.  On  /\  A  e.  On )  ->  ( ( A  .o  x )  +o  A
)  e.  On )
129, 10, 11syl2anc 411 . . . . . . . . 9  |-  ( ( A  e.  On  /\  x  e.  On )  ->  ( ( A  .o  x )  +o  A
)  e.  On )
13 oveq1 5926 . . . . . . . . . 10  |-  ( y  =  ( A  .o  x )  ->  (
y  +o  A )  =  ( ( A  .o  x )  +o  A ) )
14 eqid 2193 . . . . . . . . . 10  |-  ( y  e.  _V  |->  ( y  +o  A ) )  =  ( y  e. 
_V  |->  ( y  +o  A ) )
1513, 14fvmptg 5634 . . . . . . . . 9  |-  ( ( ( A  .o  x
)  e.  _V  /\  ( ( A  .o  x )  +o  A
)  e.  On )  ->  ( ( y  e.  _V  |->  ( y  +o  A ) ) `
 ( A  .o  x ) )  =  ( ( A  .o  x )  +o  A
) )
168, 12, 15syl2anc 411 . . . . . . . 8  |-  ( ( A  e.  On  /\  x  e.  On )  ->  ( ( y  e. 
_V  |->  ( y  +o  A ) ) `  ( A  .o  x
) )  =  ( ( A  .o  x
)  +o  A ) )
17 omv 6510 . . . . . . . . 9  |-  ( ( A  e.  On  /\  x  e.  On )  ->  ( A  .o  x
)  =  ( rec ( ( y  e. 
_V  |->  ( y  +o  A ) ) ,  (/) ) `  x ) )
1817fveq2d 5559 . . . . . . . 8  |-  ( ( A  e.  On  /\  x  e.  On )  ->  ( ( y  e. 
_V  |->  ( y  +o  A ) ) `  ( A  .o  x
) )  =  ( ( y  e.  _V  |->  ( y  +o  A
) ) `  ( rec ( ( y  e. 
_V  |->  ( y  +o  A ) ) ,  (/) ) `  x ) ) )
1916, 18eqtr3d 2228 . . . . . . 7  |-  ( ( A  e.  On  /\  x  e.  On )  ->  ( ( A  .o  x )  +o  A
)  =  ( ( y  e.  _V  |->  ( y  +o  A ) ) `  ( rec ( ( y  e. 
_V  |->  ( y  +o  A ) ) ,  (/) ) `  x ) ) )
207, 19sylan2 286 . . . . . 6  |-  ( ( A  e.  On  /\  ( B  e.  On  /\  x  e.  B ) )  ->  ( ( A  .o  x )  +o  A )  =  ( ( y  e.  _V  |->  ( y  +o  A
) ) `  ( rec ( ( y  e. 
_V  |->  ( y  +o  A ) ) ,  (/) ) `  x ) ) )
2120anassrs 400 . . . . 5  |-  ( ( ( A  e.  On  /\  B  e.  On )  /\  x  e.  B
)  ->  ( ( A  .o  x )  +o  A )  =  ( ( y  e.  _V  |->  ( y  +o  A
) ) `  ( rec ( ( y  e. 
_V  |->  ( y  +o  A ) ) ,  (/) ) `  x ) ) )
2221iuneq2dv 3934 . . . 4  |-  ( ( A  e.  On  /\  B  e.  On )  ->  U_ x  e.  B  ( ( A  .o  x )  +o  A
)  =  U_ x  e.  B  ( (
y  e.  _V  |->  ( y  +o  A ) ) `  ( rec ( ( y  e. 
_V  |->  ( y  +o  A ) ) ,  (/) ) `  x ) ) )
2322uneq2d 3314 . . 3  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( (/)  u.  U_ x  e.  B  ( ( A  .o  x )  +o  A ) )  =  ( (/)  u.  U_ x  e.  B  ( (
y  e.  _V  |->  ( y  +o  A ) ) `  ( rec ( ( y  e. 
_V  |->  ( y  +o  A ) ) ,  (/) ) `  x ) ) ) )
245, 6, 233eqtr4d 2236 . 2  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  .o  B
)  =  ( (/)  u. 
U_ x  e.  B  ( ( A  .o  x )  +o  A
) ) )
25 uncom 3304 . . 3  |-  ( (/)  u. 
U_ x  e.  B  ( ( A  .o  x )  +o  A
) )  =  (
U_ x  e.  B  ( ( A  .o  x )  +o  A
)  u.  (/) )
26 un0 3481 . . 3  |-  ( U_ x  e.  B  (
( A  .o  x
)  +o  A )  u.  (/) )  =  U_ x  e.  B  (
( A  .o  x
)  +o  A )
2725, 26eqtri 2214 . 2  |-  ( (/)  u. 
U_ x  e.  B  ( ( A  .o  x )  +o  A
) )  =  U_ x  e.  B  (
( A  .o  x
)  +o  A )
2824, 27eqtrdi 2242 1  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  .o  B
)  =  U_ x  e.  B  ( ( A  .o  x )  +o  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   _Vcvv 2760    u. cun 3152   (/)c0 3447   U_ciun 3913    |-> cmpt 4091   Oncon0 4395    Fn wfn 5250   ` cfv 5255  (class class class)co 5919   reccrdg 6424    +o coa 6468    .o comu 6469
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-iord 4398  df-on 4400  df-suc 4403  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-oadd 6475  df-omul 6476
This theorem is referenced by:  omsuc  6527
  Copyright terms: Public domain W3C validator