Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > omv2 | Unicode version |
Description: Value of ordinal multiplication. (Contributed by Jim Kingdon, 23-Aug-2019.) |
Ref | Expression |
---|---|
omv2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omfnex 6428 | . . . 4 | |
2 | 0elon 4377 | . . . . 5 | |
3 | rdgival 6361 | . . . . 5 | |
4 | 2, 3 | mp3an2 1320 | . . . 4 |
5 | 1, 4 | sylan 281 | . . 3 |
6 | omv 6434 | . . 3 | |
7 | onelon 4369 | . . . . . . 7 | |
8 | omexg 6430 | . . . . . . . . 9 | |
9 | omcl 6440 | . . . . . . . . . 10 | |
10 | simpl 108 | . . . . . . . . . 10 | |
11 | oacl 6439 | . . . . . . . . . 10 | |
12 | 9, 10, 11 | syl2anc 409 | . . . . . . . . 9 |
13 | oveq1 5860 | . . . . . . . . . 10 | |
14 | eqid 2170 | . . . . . . . . . 10 | |
15 | 13, 14 | fvmptg 5572 | . . . . . . . . 9 |
16 | 8, 12, 15 | syl2anc 409 | . . . . . . . 8 |
17 | omv 6434 | . . . . . . . . 9 | |
18 | 17 | fveq2d 5500 | . . . . . . . 8 |
19 | 16, 18 | eqtr3d 2205 | . . . . . . 7 |
20 | 7, 19 | sylan2 284 | . . . . . 6 |
21 | 20 | anassrs 398 | . . . . 5 |
22 | 21 | iuneq2dv 3894 | . . . 4 |
23 | 22 | uneq2d 3281 | . . 3 |
24 | 5, 6, 23 | 3eqtr4d 2213 | . 2 |
25 | uncom 3271 | . . 3 | |
26 | un0 3448 | . . 3 | |
27 | 25, 26 | eqtri 2191 | . 2 |
28 | 24, 27 | eqtrdi 2219 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 wcel 2141 cvv 2730 cun 3119 c0 3414 ciun 3873 cmpt 4050 con0 4348 wfn 5193 cfv 5198 (class class class)co 5853 crdg 6348 coa 6392 comu 6393 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-iord 4351 df-on 4353 df-suc 4356 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-irdg 6349 df-oadd 6399 df-omul 6400 |
This theorem is referenced by: omsuc 6451 |
Copyright terms: Public domain | W3C validator |