| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > omv2 | Unicode version | ||
| Description: Value of ordinal multiplication. (Contributed by Jim Kingdon, 23-Aug-2019.) |
| Ref | Expression |
|---|---|
| omv2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omfnex 6535 |
. . . 4
| |
| 2 | 0elon 4439 |
. . . . 5
| |
| 3 | rdgival 6468 |
. . . . 5
| |
| 4 | 2, 3 | mp3an2 1338 |
. . . 4
|
| 5 | 1, 4 | sylan 283 |
. . 3
|
| 6 | omv 6541 |
. . 3
| |
| 7 | onelon 4431 |
. . . . . . 7
| |
| 8 | omexg 6537 |
. . . . . . . . 9
| |
| 9 | omcl 6547 |
. . . . . . . . . 10
| |
| 10 | simpl 109 |
. . . . . . . . . 10
| |
| 11 | oacl 6546 |
. . . . . . . . . 10
| |
| 12 | 9, 10, 11 | syl2anc 411 |
. . . . . . . . 9
|
| 13 | oveq1 5951 |
. . . . . . . . . 10
| |
| 14 | eqid 2205 |
. . . . . . . . . 10
| |
| 15 | 13, 14 | fvmptg 5655 |
. . . . . . . . 9
|
| 16 | 8, 12, 15 | syl2anc 411 |
. . . . . . . 8
|
| 17 | omv 6541 |
. . . . . . . . 9
| |
| 18 | 17 | fveq2d 5580 |
. . . . . . . 8
|
| 19 | 16, 18 | eqtr3d 2240 |
. . . . . . 7
|
| 20 | 7, 19 | sylan2 286 |
. . . . . 6
|
| 21 | 20 | anassrs 400 |
. . . . 5
|
| 22 | 21 | iuneq2dv 3948 |
. . . 4
|
| 23 | 22 | uneq2d 3327 |
. . 3
|
| 24 | 5, 6, 23 | 3eqtr4d 2248 |
. 2
|
| 25 | uncom 3317 |
. . 3
| |
| 26 | un0 3494 |
. . 3
| |
| 27 | 25, 26 | eqtri 2226 |
. 2
|
| 28 | 24, 27 | eqtrdi 2254 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-tr 4143 df-id 4340 df-iord 4413 df-on 4415 df-suc 4418 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-ov 5947 df-oprab 5948 df-mpo 5949 df-1st 6226 df-2nd 6227 df-recs 6391 df-irdg 6456 df-oadd 6506 df-omul 6507 |
| This theorem is referenced by: omsuc 6558 |
| Copyright terms: Public domain | W3C validator |