ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  omv2 Unicode version

Theorem omv2 6433
Description: Value of ordinal multiplication. (Contributed by Jim Kingdon, 23-Aug-2019.)
Assertion
Ref Expression
omv2  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  .o  B
)  =  U_ x  e.  B  ( ( A  .o  x )  +o  A ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem omv2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 omfnex 6417 . . . 4  |-  ( A  e.  On  ->  (
y  e.  _V  |->  ( y  +o  A ) )  Fn  _V )
2 0elon 4370 . . . . 5  |-  (/)  e.  On
3 rdgival 6350 . . . . 5  |-  ( ( ( y  e.  _V  |->  ( y  +o  A
) )  Fn  _V  /\  (/)  e.  On  /\  B  e.  On )  ->  ( rec ( ( y  e. 
_V  |->  ( y  +o  A ) ) ,  (/) ) `  B )  =  ( (/)  u.  U_ x  e.  B  (
( y  e.  _V  |->  ( y  +o  A
) ) `  ( rec ( ( y  e. 
_V  |->  ( y  +o  A ) ) ,  (/) ) `  x ) ) ) )
42, 3mp3an2 1315 . . . 4  |-  ( ( ( y  e.  _V  |->  ( y  +o  A
) )  Fn  _V  /\  B  e.  On )  ->  ( rec (
( y  e.  _V  |->  ( y  +o  A
) ) ,  (/) ) `  B )  =  ( (/)  u.  U_ x  e.  B  (
( y  e.  _V  |->  ( y  +o  A
) ) `  ( rec ( ( y  e. 
_V  |->  ( y  +o  A ) ) ,  (/) ) `  x ) ) ) )
51, 4sylan 281 . . 3  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( rec ( ( y  e.  _V  |->  ( y  +o  A ) ) ,  (/) ) `  B )  =  (
(/)  u.  U_ x  e.  B  ( ( y  e.  _V  |->  ( y  +o  A ) ) `
 ( rec (
( y  e.  _V  |->  ( y  +o  A
) ) ,  (/) ) `  x )
) ) )
6 omv 6423 . . 3  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  .o  B
)  =  ( rec ( ( y  e. 
_V  |->  ( y  +o  A ) ) ,  (/) ) `  B ) )
7 onelon 4362 . . . . . . 7  |-  ( ( B  e.  On  /\  x  e.  B )  ->  x  e.  On )
8 omexg 6419 . . . . . . . . 9  |-  ( ( A  e.  On  /\  x  e.  On )  ->  ( A  .o  x
)  e.  _V )
9 omcl 6429 . . . . . . . . . 10  |-  ( ( A  e.  On  /\  x  e.  On )  ->  ( A  .o  x
)  e.  On )
10 simpl 108 . . . . . . . . . 10  |-  ( ( A  e.  On  /\  x  e.  On )  ->  A  e.  On )
11 oacl 6428 . . . . . . . . . 10  |-  ( ( ( A  .o  x
)  e.  On  /\  A  e.  On )  ->  ( ( A  .o  x )  +o  A
)  e.  On )
129, 10, 11syl2anc 409 . . . . . . . . 9  |-  ( ( A  e.  On  /\  x  e.  On )  ->  ( ( A  .o  x )  +o  A
)  e.  On )
13 oveq1 5849 . . . . . . . . . 10  |-  ( y  =  ( A  .o  x )  ->  (
y  +o  A )  =  ( ( A  .o  x )  +o  A ) )
14 eqid 2165 . . . . . . . . . 10  |-  ( y  e.  _V  |->  ( y  +o  A ) )  =  ( y  e. 
_V  |->  ( y  +o  A ) )
1513, 14fvmptg 5562 . . . . . . . . 9  |-  ( ( ( A  .o  x
)  e.  _V  /\  ( ( A  .o  x )  +o  A
)  e.  On )  ->  ( ( y  e.  _V  |->  ( y  +o  A ) ) `
 ( A  .o  x ) )  =  ( ( A  .o  x )  +o  A
) )
168, 12, 15syl2anc 409 . . . . . . . 8  |-  ( ( A  e.  On  /\  x  e.  On )  ->  ( ( y  e. 
_V  |->  ( y  +o  A ) ) `  ( A  .o  x
) )  =  ( ( A  .o  x
)  +o  A ) )
17 omv 6423 . . . . . . . . 9  |-  ( ( A  e.  On  /\  x  e.  On )  ->  ( A  .o  x
)  =  ( rec ( ( y  e. 
_V  |->  ( y  +o  A ) ) ,  (/) ) `  x ) )
1817fveq2d 5490 . . . . . . . 8  |-  ( ( A  e.  On  /\  x  e.  On )  ->  ( ( y  e. 
_V  |->  ( y  +o  A ) ) `  ( A  .o  x
) )  =  ( ( y  e.  _V  |->  ( y  +o  A
) ) `  ( rec ( ( y  e. 
_V  |->  ( y  +o  A ) ) ,  (/) ) `  x ) ) )
1916, 18eqtr3d 2200 . . . . . . 7  |-  ( ( A  e.  On  /\  x  e.  On )  ->  ( ( A  .o  x )  +o  A
)  =  ( ( y  e.  _V  |->  ( y  +o  A ) ) `  ( rec ( ( y  e. 
_V  |->  ( y  +o  A ) ) ,  (/) ) `  x ) ) )
207, 19sylan2 284 . . . . . 6  |-  ( ( A  e.  On  /\  ( B  e.  On  /\  x  e.  B ) )  ->  ( ( A  .o  x )  +o  A )  =  ( ( y  e.  _V  |->  ( y  +o  A
) ) `  ( rec ( ( y  e. 
_V  |->  ( y  +o  A ) ) ,  (/) ) `  x ) ) )
2120anassrs 398 . . . . 5  |-  ( ( ( A  e.  On  /\  B  e.  On )  /\  x  e.  B
)  ->  ( ( A  .o  x )  +o  A )  =  ( ( y  e.  _V  |->  ( y  +o  A
) ) `  ( rec ( ( y  e. 
_V  |->  ( y  +o  A ) ) ,  (/) ) `  x ) ) )
2221iuneq2dv 3887 . . . 4  |-  ( ( A  e.  On  /\  B  e.  On )  ->  U_ x  e.  B  ( ( A  .o  x )  +o  A
)  =  U_ x  e.  B  ( (
y  e.  _V  |->  ( y  +o  A ) ) `  ( rec ( ( y  e. 
_V  |->  ( y  +o  A ) ) ,  (/) ) `  x ) ) )
2322uneq2d 3276 . . 3  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( (/)  u.  U_ x  e.  B  ( ( A  .o  x )  +o  A ) )  =  ( (/)  u.  U_ x  e.  B  ( (
y  e.  _V  |->  ( y  +o  A ) ) `  ( rec ( ( y  e. 
_V  |->  ( y  +o  A ) ) ,  (/) ) `  x ) ) ) )
245, 6, 233eqtr4d 2208 . 2  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  .o  B
)  =  ( (/)  u. 
U_ x  e.  B  ( ( A  .o  x )  +o  A
) ) )
25 uncom 3266 . . 3  |-  ( (/)  u. 
U_ x  e.  B  ( ( A  .o  x )  +o  A
) )  =  (
U_ x  e.  B  ( ( A  .o  x )  +o  A
)  u.  (/) )
26 un0 3442 . . 3  |-  ( U_ x  e.  B  (
( A  .o  x
)  +o  A )  u.  (/) )  =  U_ x  e.  B  (
( A  .o  x
)  +o  A )
2725, 26eqtri 2186 . 2  |-  ( (/)  u. 
U_ x  e.  B  ( ( A  .o  x )  +o  A
) )  =  U_ x  e.  B  (
( A  .o  x
)  +o  A )
2824, 27eqtrdi 2215 1  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  .o  B
)  =  U_ x  e.  B  ( ( A  .o  x )  +o  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136   _Vcvv 2726    u. cun 3114   (/)c0 3409   U_ciun 3866    |-> cmpt 4043   Oncon0 4341    Fn wfn 5183   ` cfv 5188  (class class class)co 5842   reccrdg 6337    +o coa 6381    .o comu 6382
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-suc 4349  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-oadd 6388  df-omul 6389
This theorem is referenced by:  omsuc  6440
  Copyright terms: Public domain W3C validator