ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfonelemrn Unicode version

Theorem ennnfonelemrn 12905
Description: Lemma for ennnfone 12911. 
L is onto  A. (Contributed by Jim Kingdon, 16-Jul-2023.)
Hypotheses
Ref Expression
ennnfonelemh.dceq  |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
ennnfonelemh.f  |-  ( ph  ->  F : om -onto-> A
)
ennnfonelemh.ne  |-  ( ph  ->  A. n  e.  om  E. k  e.  om  A. j  e.  suc  n ( F `  k )  =/=  ( F `  j ) )
ennnfonelemh.g  |-  G  =  ( x  e.  ( A  ^pm  om ) ,  y  e.  om  |->  if ( ( F `  y )  e.  ( F " y ) ,  x ,  ( x  u.  { <. dom  x ,  ( F `
 y ) >. } ) ) )
ennnfonelemh.n  |-  N  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
ennnfonelemh.j  |-  J  =  ( x  e.  NN0  |->  if ( x  =  0 ,  (/) ,  ( `' N `  ( x  -  1 ) ) ) )
ennnfonelemh.h  |-  H  =  seq 0 ( G ,  J )
ennnfone.l  |-  L  = 
U_ i  e.  NN0  ( H `  i )
Assertion
Ref Expression
ennnfonelemrn  |-  ( ph  ->  ran  L  =  A )
Distinct variable groups:    A, j, x, y    i, F, j, x, y, k    n, F, k    j, G    i, H, j, x, y, k   
j, J    i, N, j, x, y, k    ph, i,
j, x, y, k   
j, n
Allowed substitution hints:    ph( n)    A( i,
k, n)    G( x, y, i, k, n)    H( n)    J( x, y, i, k, n)    L( x, y, i, j, k, n)    N( n)

Proof of Theorem ennnfonelemrn
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 ennnfonelemh.dceq . . . 4  |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
2 ennnfonelemh.f . . . 4  |-  ( ph  ->  F : om -onto-> A
)
3 ennnfonelemh.ne . . . 4  |-  ( ph  ->  A. n  e.  om  E. k  e.  om  A. j  e.  suc  n ( F `  k )  =/=  ( F `  j ) )
4 ennnfonelemh.g . . . 4  |-  G  =  ( x  e.  ( A  ^pm  om ) ,  y  e.  om  |->  if ( ( F `  y )  e.  ( F " y ) ,  x ,  ( x  u.  { <. dom  x ,  ( F `
 y ) >. } ) ) )
5 ennnfonelemh.n . . . 4  |-  N  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
6 ennnfonelemh.j . . . 4  |-  J  =  ( x  e.  NN0  |->  if ( x  =  0 ,  (/) ,  ( `' N `  ( x  -  1 ) ) ) )
7 ennnfonelemh.h . . . 4  |-  H  =  seq 0 ( G ,  J )
8 ennnfone.l . . . 4  |-  L  = 
U_ i  e.  NN0  ( H `  i )
91, 2, 3, 4, 5, 6, 7, 8ennnfonelemf1 12904 . . 3  |-  ( ph  ->  L : dom  L -1-1-> A )
10 f1f 5503 . . 3  |-  ( L : dom  L -1-1-> A  ->  L : dom  L --> A )
11 frn 5454 . . 3  |-  ( L : dom  L --> A  ->  ran  L  C_  A )
129, 10, 113syl 17 . 2  |-  ( ph  ->  ran  L  C_  A
)
13 foelrn 5844 . . . . . 6  |-  ( ( F : om -onto-> A  /\  w  e.  A
)  ->  E. j  e.  om  w  =  ( F `  j ) )
142, 13sylan 283 . . . . 5  |-  ( (
ph  /\  w  e.  A )  ->  E. j  e.  om  w  =  ( F `  j ) )
15 0zd 9419 . . . . . . . 8  |-  ( ( ( ph  /\  w  e.  A )  /\  (
j  e.  om  /\  w  =  ( F `  j ) ) )  ->  0  e.  ZZ )
16 simprl 529 . . . . . . . . 9  |-  ( ( ( ph  /\  w  e.  A )  /\  (
j  e.  om  /\  w  =  ( F `  j ) ) )  ->  j  e.  om )
17 peano2 4661 . . . . . . . . 9  |-  ( j  e.  om  ->  suc  j  e.  om )
1816, 17syl 14 . . . . . . . 8  |-  ( ( ( ph  /\  w  e.  A )  /\  (
j  e.  om  /\  w  =  ( F `  j ) ) )  ->  suc  j  e.  om )
1915, 5, 18frec2uzuzd 10584 . . . . . . 7  |-  ( ( ( ph  /\  w  e.  A )  /\  (
j  e.  om  /\  w  =  ( F `  j ) ) )  ->  ( N `  suc  j )  e.  (
ZZ>= `  0 ) )
20 nn0uz 9718 . . . . . . 7  |-  NN0  =  ( ZZ>= `  0 )
2119, 20eleqtrrdi 2301 . . . . . 6  |-  ( ( ( ph  /\  w  e.  A )  /\  (
j  e.  om  /\  w  =  ( F `  j ) ) )  ->  ( N `  suc  j )  e.  NN0 )
22 fofn 5522 . . . . . . . . . 10  |-  ( F : om -onto-> A  ->  F  Fn  om )
232, 22syl 14 . . . . . . . . 9  |-  ( ph  ->  F  Fn  om )
2423ad2antrr 488 . . . . . . . 8  |-  ( ( ( ph  /\  w  e.  A )  /\  (
j  e.  om  /\  w  =  ( F `  j ) ) )  ->  F  Fn  om )
25 ordom 4673 . . . . . . . . 9  |-  Ord  om
26 ordsucss 4570 . . . . . . . . 9  |-  ( Ord 
om  ->  ( j  e. 
om  ->  suc  j  C_  om ) )
2725, 16, 26mpsyl 65 . . . . . . . 8  |-  ( ( ( ph  /\  w  e.  A )  /\  (
j  e.  om  /\  w  =  ( F `  j ) ) )  ->  suc  j  C_  om )
28 vex 2779 . . . . . . . . . 10  |-  j  e. 
_V
2928sucid 4482 . . . . . . . . 9  |-  j  e. 
suc  j
3029a1i 9 . . . . . . . 8  |-  ( ( ( ph  /\  w  e.  A )  /\  (
j  e.  om  /\  w  =  ( F `  j ) ) )  ->  j  e.  suc  j )
31 fnfvima 5842 . . . . . . . 8  |-  ( ( F  Fn  om  /\  suc  j  C_  om  /\  j  e.  suc  j )  ->  ( F `  j )  e.  ( F " suc  j
) )
3224, 27, 30, 31syl3anc 1250 . . . . . . 7  |-  ( ( ( ph  /\  w  e.  A )  /\  (
j  e.  om  /\  w  =  ( F `  j ) ) )  ->  ( F `  j )  e.  ( F " suc  j
) )
33 simprr 531 . . . . . . 7  |-  ( ( ( ph  /\  w  e.  A )  /\  (
j  e.  om  /\  w  =  ( F `  j ) ) )  ->  w  =  ( F `  j ) )
3415, 5frec2uzf1od 10588 . . . . . . . . 9  |-  ( ( ( ph  /\  w  e.  A )  /\  (
j  e.  om  /\  w  =  ( F `  j ) ) )  ->  N : om -1-1-onto-> ( ZZ>=
`  0 ) )
35 f1ocnvfv1 5869 . . . . . . . . 9  |-  ( ( N : om -1-1-onto-> ( ZZ>= `  0 )  /\  suc  j  e.  om )  ->  ( `' N `  ( N `  suc  j ) )  =  suc  j )
3634, 18, 35syl2anc 411 . . . . . . . 8  |-  ( ( ( ph  /\  w  e.  A )  /\  (
j  e.  om  /\  w  =  ( F `  j ) ) )  ->  ( `' N `  ( N `  suc  j ) )  =  suc  j )
3736imaeq2d 5041 . . . . . . 7  |-  ( ( ( ph  /\  w  e.  A )  /\  (
j  e.  om  /\  w  =  ( F `  j ) ) )  ->  ( F "
( `' N `  ( N `  suc  j
) ) )  =  ( F " suc  j ) )
3832, 33, 373eltr4d 2291 . . . . . 6  |-  ( ( ( ph  /\  w  e.  A )  /\  (
j  e.  om  /\  w  =  ( F `  j ) ) )  ->  w  e.  ( F " ( `' N `  ( N `
 suc  j )
) ) )
39 fveq2 5599 . . . . . . . . 9  |-  ( i  =  ( N `  suc  j )  ->  ( `' N `  i )  =  ( `' N `  ( N `  suc  j ) ) )
4039imaeq2d 5041 . . . . . . . 8  |-  ( i  =  ( N `  suc  j )  ->  ( F " ( `' N `  i ) )  =  ( F " ( `' N `  ( N `
 suc  j )
) ) )
4140eleq2d 2277 . . . . . . 7  |-  ( i  =  ( N `  suc  j )  ->  (
w  e.  ( F
" ( `' N `  i ) )  <->  w  e.  ( F " ( `' N `  ( N `
 suc  j )
) ) ) )
4241rspcev 2884 . . . . . 6  |-  ( ( ( N `  suc  j )  e.  NN0  /\  w  e.  ( F
" ( `' N `  ( N `  suc  j ) ) ) )  ->  E. i  e.  NN0  w  e.  ( F " ( `' N `  i ) ) )
4321, 38, 42syl2anc 411 . . . . 5  |-  ( ( ( ph  /\  w  e.  A )  /\  (
j  e.  om  /\  w  =  ( F `  j ) ) )  ->  E. i  e.  NN0  w  e.  ( F " ( `' N `  i ) ) )
4414, 43rexlimddv 2630 . . . 4  |-  ( (
ph  /\  w  e.  A )  ->  E. i  e.  NN0  w  e.  ( F " ( `' N `  i ) ) )
45 eliun 3945 . . . 4  |-  ( w  e.  U_ i  e. 
NN0  ( F "
( `' N `  i ) )  <->  E. i  e.  NN0  w  e.  ( F " ( `' N `  i ) ) )
4644, 45sylibr 134 . . 3  |-  ( (
ph  /\  w  e.  A )  ->  w  e.  U_ i  e.  NN0  ( F " ( `' N `  i ) ) )
478rneqi 4925 . . . . . . 7  |-  ran  L  =  ran  U_ i  e.  NN0  ( H `  i )
48 rniun 5112 . . . . . . 7  |-  ran  U_ i  e.  NN0  ( H `  i )  =  U_ i  e.  NN0  ran  ( H `  i )
4947, 48eqtri 2228 . . . . . 6  |-  ran  L  =  U_ i  e.  NN0  ran  ( H `  i
)
501adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  i  e.  NN0 )  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y
)
512adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  i  e.  NN0 )  ->  F : om -onto-> A )
523adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  i  e.  NN0 )  ->  A. n  e.  om  E. k  e. 
om  A. j  e.  suc  n ( F `  k )  =/=  ( F `  j )
)
53 simpr 110 . . . . . . . . 9  |-  ( (
ph  /\  i  e.  NN0 )  ->  i  e.  NN0 )
5450, 51, 52, 4, 5, 6, 7, 53ennnfonelemhf1o 12899 . . . . . . . 8  |-  ( (
ph  /\  i  e.  NN0 )  ->  ( H `  i ) : dom  ( H `  i ) -1-1-onto-> ( F " ( `' N `  i ) ) )
55 f1ofo 5551 . . . . . . . 8  |-  ( ( H `  i ) : dom  ( H `
 i ) -1-1-onto-> ( F
" ( `' N `  i ) )  -> 
( H `  i
) : dom  ( H `  i ) -onto->
( F " ( `' N `  i ) ) )
56 forn 5523 . . . . . . . 8  |-  ( ( H `  i ) : dom  ( H `
 i ) -onto-> ( F " ( `' N `  i ) )  ->  ran  ( H `
 i )  =  ( F " ( `' N `  i ) ) )
5754, 55, 563syl 17 . . . . . . 7  |-  ( (
ph  /\  i  e.  NN0 )  ->  ran  ( H `
 i )  =  ( F " ( `' N `  i ) ) )
5857iuneq2dv 3962 . . . . . 6  |-  ( ph  ->  U_ i  e.  NN0  ran  ( H `  i
)  =  U_ i  e.  NN0  ( F "
( `' N `  i ) ) )
5949, 58eqtrid 2252 . . . . 5  |-  ( ph  ->  ran  L  =  U_ i  e.  NN0  ( F
" ( `' N `  i ) ) )
6059eleq2d 2277 . . . 4  |-  ( ph  ->  ( w  e.  ran  L  <-> 
w  e.  U_ i  e.  NN0  ( F "
( `' N `  i ) ) ) )
6160adantr 276 . . 3  |-  ( (
ph  /\  w  e.  A )  ->  (
w  e.  ran  L  <->  w  e.  U_ i  e. 
NN0  ( F "
( `' N `  i ) ) ) )
6246, 61mpbird 167 . 2  |-  ( (
ph  /\  w  e.  A )  ->  w  e.  ran  L )
6312, 62eqelssd 3220 1  |-  ( ph  ->  ran  L  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105  DECID wdc 836    = wceq 1373    e. wcel 2178    =/= wne 2378   A.wral 2486   E.wrex 2487    u. cun 3172    C_ wss 3174   (/)c0 3468   ifcif 3579   {csn 3643   <.cop 3646   U_ciun 3941    |-> cmpt 4121   Ord word 4427   suc csuc 4430   omcom 4656   `'ccnv 4692   dom cdm 4693   ran crn 4694   "cima 4696    Fn wfn 5285   -->wf 5286   -1-1->wf1 5287   -onto->wfo 5288   -1-1-onto->wf1o 5289   ` cfv 5290  (class class class)co 5967    e. cmpo 5969  freccfrec 6499    ^pm cpm 6759   0cc0 7960   1c1 7961    + caddc 7963    - cmin 8278   NN0cn0 9330   ZZcz 9407   ZZ>=cuz 9683    seqcseq 10629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-pm 6761  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-inn 9072  df-n0 9331  df-z 9408  df-uz 9684  df-seqfrec 10630
This theorem is referenced by:  ennnfonelemen  12907
  Copyright terms: Public domain W3C validator