ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfonelemrn Unicode version

Theorem ennnfonelemrn 12403
Description: Lemma for ennnfone 12409. 
L is onto  A. (Contributed by Jim Kingdon, 16-Jul-2023.)
Hypotheses
Ref Expression
ennnfonelemh.dceq  |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
ennnfonelemh.f  |-  ( ph  ->  F : om -onto-> A
)
ennnfonelemh.ne  |-  ( ph  ->  A. n  e.  om  E. k  e.  om  A. j  e.  suc  n ( F `  k )  =/=  ( F `  j ) )
ennnfonelemh.g  |-  G  =  ( x  e.  ( A  ^pm  om ) ,  y  e.  om  |->  if ( ( F `  y )  e.  ( F " y ) ,  x ,  ( x  u.  { <. dom  x ,  ( F `
 y ) >. } ) ) )
ennnfonelemh.n  |-  N  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
ennnfonelemh.j  |-  J  =  ( x  e.  NN0  |->  if ( x  =  0 ,  (/) ,  ( `' N `  ( x  -  1 ) ) ) )
ennnfonelemh.h  |-  H  =  seq 0 ( G ,  J )
ennnfone.l  |-  L  = 
U_ i  e.  NN0  ( H `  i )
Assertion
Ref Expression
ennnfonelemrn  |-  ( ph  ->  ran  L  =  A )
Distinct variable groups:    A, j, x, y    i, F, j, x, y, k    n, F, k    j, G    i, H, j, x, y, k   
j, J    i, N, j, x, y, k    ph, i,
j, x, y, k   
j, n
Allowed substitution hints:    ph( n)    A( i,
k, n)    G( x, y, i, k, n)    H( n)    J( x, y, i, k, n)    L( x, y, i, j, k, n)    N( n)

Proof of Theorem ennnfonelemrn
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 ennnfonelemh.dceq . . . 4  |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
2 ennnfonelemh.f . . . 4  |-  ( ph  ->  F : om -onto-> A
)
3 ennnfonelemh.ne . . . 4  |-  ( ph  ->  A. n  e.  om  E. k  e.  om  A. j  e.  suc  n ( F `  k )  =/=  ( F `  j ) )
4 ennnfonelemh.g . . . 4  |-  G  =  ( x  e.  ( A  ^pm  om ) ,  y  e.  om  |->  if ( ( F `  y )  e.  ( F " y ) ,  x ,  ( x  u.  { <. dom  x ,  ( F `
 y ) >. } ) ) )
5 ennnfonelemh.n . . . 4  |-  N  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
6 ennnfonelemh.j . . . 4  |-  J  =  ( x  e.  NN0  |->  if ( x  =  0 ,  (/) ,  ( `' N `  ( x  -  1 ) ) ) )
7 ennnfonelemh.h . . . 4  |-  H  =  seq 0 ( G ,  J )
8 ennnfone.l . . . 4  |-  L  = 
U_ i  e.  NN0  ( H `  i )
91, 2, 3, 4, 5, 6, 7, 8ennnfonelemf1 12402 . . 3  |-  ( ph  ->  L : dom  L -1-1-> A )
10 f1f 5417 . . 3  |-  ( L : dom  L -1-1-> A  ->  L : dom  L --> A )
11 frn 5370 . . 3  |-  ( L : dom  L --> A  ->  ran  L  C_  A )
129, 10, 113syl 17 . 2  |-  ( ph  ->  ran  L  C_  A
)
13 foelrn 5748 . . . . . 6  |-  ( ( F : om -onto-> A  /\  w  e.  A
)  ->  E. j  e.  om  w  =  ( F `  j ) )
142, 13sylan 283 . . . . 5  |-  ( (
ph  /\  w  e.  A )  ->  E. j  e.  om  w  =  ( F `  j ) )
15 0zd 9254 . . . . . . . 8  |-  ( ( ( ph  /\  w  e.  A )  /\  (
j  e.  om  /\  w  =  ( F `  j ) ) )  ->  0  e.  ZZ )
16 simprl 529 . . . . . . . . 9  |-  ( ( ( ph  /\  w  e.  A )  /\  (
j  e.  om  /\  w  =  ( F `  j ) ) )  ->  j  e.  om )
17 peano2 4591 . . . . . . . . 9  |-  ( j  e.  om  ->  suc  j  e.  om )
1816, 17syl 14 . . . . . . . 8  |-  ( ( ( ph  /\  w  e.  A )  /\  (
j  e.  om  /\  w  =  ( F `  j ) ) )  ->  suc  j  e.  om )
1915, 5, 18frec2uzuzd 10388 . . . . . . 7  |-  ( ( ( ph  /\  w  e.  A )  /\  (
j  e.  om  /\  w  =  ( F `  j ) ) )  ->  ( N `  suc  j )  e.  (
ZZ>= `  0 ) )
20 nn0uz 9551 . . . . . . 7  |-  NN0  =  ( ZZ>= `  0 )
2119, 20eleqtrrdi 2271 . . . . . 6  |-  ( ( ( ph  /\  w  e.  A )  /\  (
j  e.  om  /\  w  =  ( F `  j ) ) )  ->  ( N `  suc  j )  e.  NN0 )
22 fofn 5436 . . . . . . . . . 10  |-  ( F : om -onto-> A  ->  F  Fn  om )
232, 22syl 14 . . . . . . . . 9  |-  ( ph  ->  F  Fn  om )
2423ad2antrr 488 . . . . . . . 8  |-  ( ( ( ph  /\  w  e.  A )  /\  (
j  e.  om  /\  w  =  ( F `  j ) ) )  ->  F  Fn  om )
25 ordom 4603 . . . . . . . . 9  |-  Ord  om
26 ordsucss 4500 . . . . . . . . 9  |-  ( Ord 
om  ->  ( j  e. 
om  ->  suc  j  C_  om ) )
2725, 16, 26mpsyl 65 . . . . . . . 8  |-  ( ( ( ph  /\  w  e.  A )  /\  (
j  e.  om  /\  w  =  ( F `  j ) ) )  ->  suc  j  C_  om )
28 vex 2740 . . . . . . . . . 10  |-  j  e. 
_V
2928sucid 4414 . . . . . . . . 9  |-  j  e. 
suc  j
3029a1i 9 . . . . . . . 8  |-  ( ( ( ph  /\  w  e.  A )  /\  (
j  e.  om  /\  w  =  ( F `  j ) ) )  ->  j  e.  suc  j )
31 fnfvima 5746 . . . . . . . 8  |-  ( ( F  Fn  om  /\  suc  j  C_  om  /\  j  e.  suc  j )  ->  ( F `  j )  e.  ( F " suc  j
) )
3224, 27, 30, 31syl3anc 1238 . . . . . . 7  |-  ( ( ( ph  /\  w  e.  A )  /\  (
j  e.  om  /\  w  =  ( F `  j ) ) )  ->  ( F `  j )  e.  ( F " suc  j
) )
33 simprr 531 . . . . . . 7  |-  ( ( ( ph  /\  w  e.  A )  /\  (
j  e.  om  /\  w  =  ( F `  j ) ) )  ->  w  =  ( F `  j ) )
3415, 5frec2uzf1od 10392 . . . . . . . . 9  |-  ( ( ( ph  /\  w  e.  A )  /\  (
j  e.  om  /\  w  =  ( F `  j ) ) )  ->  N : om -1-1-onto-> ( ZZ>=
`  0 ) )
35 f1ocnvfv1 5772 . . . . . . . . 9  |-  ( ( N : om -1-1-onto-> ( ZZ>= `  0 )  /\  suc  j  e.  om )  ->  ( `' N `  ( N `  suc  j ) )  =  suc  j )
3634, 18, 35syl2anc 411 . . . . . . . 8  |-  ( ( ( ph  /\  w  e.  A )  /\  (
j  e.  om  /\  w  =  ( F `  j ) ) )  ->  ( `' N `  ( N `  suc  j ) )  =  suc  j )
3736imaeq2d 4966 . . . . . . 7  |-  ( ( ( ph  /\  w  e.  A )  /\  (
j  e.  om  /\  w  =  ( F `  j ) ) )  ->  ( F "
( `' N `  ( N `  suc  j
) ) )  =  ( F " suc  j ) )
3832, 33, 373eltr4d 2261 . . . . . 6  |-  ( ( ( ph  /\  w  e.  A )  /\  (
j  e.  om  /\  w  =  ( F `  j ) ) )  ->  w  e.  ( F " ( `' N `  ( N `
 suc  j )
) ) )
39 fveq2 5511 . . . . . . . . 9  |-  ( i  =  ( N `  suc  j )  ->  ( `' N `  i )  =  ( `' N `  ( N `  suc  j ) ) )
4039imaeq2d 4966 . . . . . . . 8  |-  ( i  =  ( N `  suc  j )  ->  ( F " ( `' N `  i ) )  =  ( F " ( `' N `  ( N `
 suc  j )
) ) )
4140eleq2d 2247 . . . . . . 7  |-  ( i  =  ( N `  suc  j )  ->  (
w  e.  ( F
" ( `' N `  i ) )  <->  w  e.  ( F " ( `' N `  ( N `
 suc  j )
) ) ) )
4241rspcev 2841 . . . . . 6  |-  ( ( ( N `  suc  j )  e.  NN0  /\  w  e.  ( F
" ( `' N `  ( N `  suc  j ) ) ) )  ->  E. i  e.  NN0  w  e.  ( F " ( `' N `  i ) ) )
4321, 38, 42syl2anc 411 . . . . 5  |-  ( ( ( ph  /\  w  e.  A )  /\  (
j  e.  om  /\  w  =  ( F `  j ) ) )  ->  E. i  e.  NN0  w  e.  ( F " ( `' N `  i ) ) )
4414, 43rexlimddv 2599 . . . 4  |-  ( (
ph  /\  w  e.  A )  ->  E. i  e.  NN0  w  e.  ( F " ( `' N `  i ) ) )
45 eliun 3888 . . . 4  |-  ( w  e.  U_ i  e. 
NN0  ( F "
( `' N `  i ) )  <->  E. i  e.  NN0  w  e.  ( F " ( `' N `  i ) ) )
4644, 45sylibr 134 . . 3  |-  ( (
ph  /\  w  e.  A )  ->  w  e.  U_ i  e.  NN0  ( F " ( `' N `  i ) ) )
478rneqi 4851 . . . . . . 7  |-  ran  L  =  ran  U_ i  e.  NN0  ( H `  i )
48 rniun 5035 . . . . . . 7  |-  ran  U_ i  e.  NN0  ( H `  i )  =  U_ i  e.  NN0  ran  ( H `  i )
4947, 48eqtri 2198 . . . . . 6  |-  ran  L  =  U_ i  e.  NN0  ran  ( H `  i
)
501adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  i  e.  NN0 )  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y
)
512adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  i  e.  NN0 )  ->  F : om -onto-> A )
523adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  i  e.  NN0 )  ->  A. n  e.  om  E. k  e. 
om  A. j  e.  suc  n ( F `  k )  =/=  ( F `  j )
)
53 simpr 110 . . . . . . . . 9  |-  ( (
ph  /\  i  e.  NN0 )  ->  i  e.  NN0 )
5450, 51, 52, 4, 5, 6, 7, 53ennnfonelemhf1o 12397 . . . . . . . 8  |-  ( (
ph  /\  i  e.  NN0 )  ->  ( H `  i ) : dom  ( H `  i ) -1-1-onto-> ( F " ( `' N `  i ) ) )
55 f1ofo 5464 . . . . . . . 8  |-  ( ( H `  i ) : dom  ( H `
 i ) -1-1-onto-> ( F
" ( `' N `  i ) )  -> 
( H `  i
) : dom  ( H `  i ) -onto->
( F " ( `' N `  i ) ) )
56 forn 5437 . . . . . . . 8  |-  ( ( H `  i ) : dom  ( H `
 i ) -onto-> ( F " ( `' N `  i ) )  ->  ran  ( H `
 i )  =  ( F " ( `' N `  i ) ) )
5754, 55, 563syl 17 . . . . . . 7  |-  ( (
ph  /\  i  e.  NN0 )  ->  ran  ( H `
 i )  =  ( F " ( `' N `  i ) ) )
5857iuneq2dv 3905 . . . . . 6  |-  ( ph  ->  U_ i  e.  NN0  ran  ( H `  i
)  =  U_ i  e.  NN0  ( F "
( `' N `  i ) ) )
5949, 58eqtrid 2222 . . . . 5  |-  ( ph  ->  ran  L  =  U_ i  e.  NN0  ( F
" ( `' N `  i ) ) )
6059eleq2d 2247 . . . 4  |-  ( ph  ->  ( w  e.  ran  L  <-> 
w  e.  U_ i  e.  NN0  ( F "
( `' N `  i ) ) ) )
6160adantr 276 . . 3  |-  ( (
ph  /\  w  e.  A )  ->  (
w  e.  ran  L  <->  w  e.  U_ i  e. 
NN0  ( F "
( `' N `  i ) ) ) )
6246, 61mpbird 167 . 2  |-  ( (
ph  /\  w  e.  A )  ->  w  e.  ran  L )
6312, 62eqelssd 3174 1  |-  ( ph  ->  ran  L  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105  DECID wdc 834    = wceq 1353    e. wcel 2148    =/= wne 2347   A.wral 2455   E.wrex 2456    u. cun 3127    C_ wss 3129   (/)c0 3422   ifcif 3534   {csn 3591   <.cop 3594   U_ciun 3884    |-> cmpt 4061   Ord word 4359   suc csuc 4362   omcom 4586   `'ccnv 4622   dom cdm 4623   ran crn 4624   "cima 4626    Fn wfn 5207   -->wf 5208   -1-1->wf1 5209   -onto->wfo 5210   -1-1-onto->wf1o 5211   ` cfv 5212  (class class class)co 5869    e. cmpo 5871  freccfrec 6385    ^pm cpm 6643   0cc0 7802   1c1 7803    + caddc 7805    - cmin 8118   NN0cn0 9165   ZZcz 9242   ZZ>=cuz 9517    seqcseq 10431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-addcom 7902  ax-addass 7904  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-0id 7910  ax-rnegex 7911  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-ltadd 7918
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-frec 6386  df-pm 6645  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-inn 8909  df-n0 9166  df-z 9243  df-uz 9518  df-seqfrec 10432
This theorem is referenced by:  ennnfonelemen  12405
  Copyright terms: Public domain W3C validator