ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfonelemrn Unicode version

Theorem ennnfonelemrn 12990
Description: Lemma for ennnfone 12996. 
L is onto  A. (Contributed by Jim Kingdon, 16-Jul-2023.)
Hypotheses
Ref Expression
ennnfonelemh.dceq  |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
ennnfonelemh.f  |-  ( ph  ->  F : om -onto-> A
)
ennnfonelemh.ne  |-  ( ph  ->  A. n  e.  om  E. k  e.  om  A. j  e.  suc  n ( F `  k )  =/=  ( F `  j ) )
ennnfonelemh.g  |-  G  =  ( x  e.  ( A  ^pm  om ) ,  y  e.  om  |->  if ( ( F `  y )  e.  ( F " y ) ,  x ,  ( x  u.  { <. dom  x ,  ( F `
 y ) >. } ) ) )
ennnfonelemh.n  |-  N  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
ennnfonelemh.j  |-  J  =  ( x  e.  NN0  |->  if ( x  =  0 ,  (/) ,  ( `' N `  ( x  -  1 ) ) ) )
ennnfonelemh.h  |-  H  =  seq 0 ( G ,  J )
ennnfone.l  |-  L  = 
U_ i  e.  NN0  ( H `  i )
Assertion
Ref Expression
ennnfonelemrn  |-  ( ph  ->  ran  L  =  A )
Distinct variable groups:    A, j, x, y    i, F, j, x, y, k    n, F, k    j, G    i, H, j, x, y, k   
j, J    i, N, j, x, y, k    ph, i,
j, x, y, k   
j, n
Allowed substitution hints:    ph( n)    A( i,
k, n)    G( x, y, i, k, n)    H( n)    J( x, y, i, k, n)    L( x, y, i, j, k, n)    N( n)

Proof of Theorem ennnfonelemrn
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 ennnfonelemh.dceq . . . 4  |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
2 ennnfonelemh.f . . . 4  |-  ( ph  ->  F : om -onto-> A
)
3 ennnfonelemh.ne . . . 4  |-  ( ph  ->  A. n  e.  om  E. k  e.  om  A. j  e.  suc  n ( F `  k )  =/=  ( F `  j ) )
4 ennnfonelemh.g . . . 4  |-  G  =  ( x  e.  ( A  ^pm  om ) ,  y  e.  om  |->  if ( ( F `  y )  e.  ( F " y ) ,  x ,  ( x  u.  { <. dom  x ,  ( F `
 y ) >. } ) ) )
5 ennnfonelemh.n . . . 4  |-  N  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
6 ennnfonelemh.j . . . 4  |-  J  =  ( x  e.  NN0  |->  if ( x  =  0 ,  (/) ,  ( `' N `  ( x  -  1 ) ) ) )
7 ennnfonelemh.h . . . 4  |-  H  =  seq 0 ( G ,  J )
8 ennnfone.l . . . 4  |-  L  = 
U_ i  e.  NN0  ( H `  i )
91, 2, 3, 4, 5, 6, 7, 8ennnfonelemf1 12989 . . 3  |-  ( ph  ->  L : dom  L -1-1-> A )
10 f1f 5531 . . 3  |-  ( L : dom  L -1-1-> A  ->  L : dom  L --> A )
11 frn 5482 . . 3  |-  ( L : dom  L --> A  ->  ran  L  C_  A )
129, 10, 113syl 17 . 2  |-  ( ph  ->  ran  L  C_  A
)
13 foelrn 5876 . . . . . 6  |-  ( ( F : om -onto-> A  /\  w  e.  A
)  ->  E. j  e.  om  w  =  ( F `  j ) )
142, 13sylan 283 . . . . 5  |-  ( (
ph  /\  w  e.  A )  ->  E. j  e.  om  w  =  ( F `  j ) )
15 0zd 9458 . . . . . . . 8  |-  ( ( ( ph  /\  w  e.  A )  /\  (
j  e.  om  /\  w  =  ( F `  j ) ) )  ->  0  e.  ZZ )
16 simprl 529 . . . . . . . . 9  |-  ( ( ( ph  /\  w  e.  A )  /\  (
j  e.  om  /\  w  =  ( F `  j ) ) )  ->  j  e.  om )
17 peano2 4687 . . . . . . . . 9  |-  ( j  e.  om  ->  suc  j  e.  om )
1816, 17syl 14 . . . . . . . 8  |-  ( ( ( ph  /\  w  e.  A )  /\  (
j  e.  om  /\  w  =  ( F `  j ) ) )  ->  suc  j  e.  om )
1915, 5, 18frec2uzuzd 10624 . . . . . . 7  |-  ( ( ( ph  /\  w  e.  A )  /\  (
j  e.  om  /\  w  =  ( F `  j ) ) )  ->  ( N `  suc  j )  e.  (
ZZ>= `  0 ) )
20 nn0uz 9757 . . . . . . 7  |-  NN0  =  ( ZZ>= `  0 )
2119, 20eleqtrrdi 2323 . . . . . 6  |-  ( ( ( ph  /\  w  e.  A )  /\  (
j  e.  om  /\  w  =  ( F `  j ) ) )  ->  ( N `  suc  j )  e.  NN0 )
22 fofn 5550 . . . . . . . . . 10  |-  ( F : om -onto-> A  ->  F  Fn  om )
232, 22syl 14 . . . . . . . . 9  |-  ( ph  ->  F  Fn  om )
2423ad2antrr 488 . . . . . . . 8  |-  ( ( ( ph  /\  w  e.  A )  /\  (
j  e.  om  /\  w  =  ( F `  j ) ) )  ->  F  Fn  om )
25 ordom 4699 . . . . . . . . 9  |-  Ord  om
26 ordsucss 4596 . . . . . . . . 9  |-  ( Ord 
om  ->  ( j  e. 
om  ->  suc  j  C_  om ) )
2725, 16, 26mpsyl 65 . . . . . . . 8  |-  ( ( ( ph  /\  w  e.  A )  /\  (
j  e.  om  /\  w  =  ( F `  j ) ) )  ->  suc  j  C_  om )
28 vex 2802 . . . . . . . . . 10  |-  j  e. 
_V
2928sucid 4508 . . . . . . . . 9  |-  j  e. 
suc  j
3029a1i 9 . . . . . . . 8  |-  ( ( ( ph  /\  w  e.  A )  /\  (
j  e.  om  /\  w  =  ( F `  j ) ) )  ->  j  e.  suc  j )
31 fnfvima 5874 . . . . . . . 8  |-  ( ( F  Fn  om  /\  suc  j  C_  om  /\  j  e.  suc  j )  ->  ( F `  j )  e.  ( F " suc  j
) )
3224, 27, 30, 31syl3anc 1271 . . . . . . 7  |-  ( ( ( ph  /\  w  e.  A )  /\  (
j  e.  om  /\  w  =  ( F `  j ) ) )  ->  ( F `  j )  e.  ( F " suc  j
) )
33 simprr 531 . . . . . . 7  |-  ( ( ( ph  /\  w  e.  A )  /\  (
j  e.  om  /\  w  =  ( F `  j ) ) )  ->  w  =  ( F `  j ) )
3415, 5frec2uzf1od 10628 . . . . . . . . 9  |-  ( ( ( ph  /\  w  e.  A )  /\  (
j  e.  om  /\  w  =  ( F `  j ) ) )  ->  N : om -1-1-onto-> ( ZZ>=
`  0 ) )
35 f1ocnvfv1 5901 . . . . . . . . 9  |-  ( ( N : om -1-1-onto-> ( ZZ>= `  0 )  /\  suc  j  e.  om )  ->  ( `' N `  ( N `  suc  j ) )  =  suc  j )
3634, 18, 35syl2anc 411 . . . . . . . 8  |-  ( ( ( ph  /\  w  e.  A )  /\  (
j  e.  om  /\  w  =  ( F `  j ) ) )  ->  ( `' N `  ( N `  suc  j ) )  =  suc  j )
3736imaeq2d 5068 . . . . . . 7  |-  ( ( ( ph  /\  w  e.  A )  /\  (
j  e.  om  /\  w  =  ( F `  j ) ) )  ->  ( F "
( `' N `  ( N `  suc  j
) ) )  =  ( F " suc  j ) )
3832, 33, 373eltr4d 2313 . . . . . 6  |-  ( ( ( ph  /\  w  e.  A )  /\  (
j  e.  om  /\  w  =  ( F `  j ) ) )  ->  w  e.  ( F " ( `' N `  ( N `
 suc  j )
) ) )
39 fveq2 5627 . . . . . . . . 9  |-  ( i  =  ( N `  suc  j )  ->  ( `' N `  i )  =  ( `' N `  ( N `  suc  j ) ) )
4039imaeq2d 5068 . . . . . . . 8  |-  ( i  =  ( N `  suc  j )  ->  ( F " ( `' N `  i ) )  =  ( F " ( `' N `  ( N `
 suc  j )
) ) )
4140eleq2d 2299 . . . . . . 7  |-  ( i  =  ( N `  suc  j )  ->  (
w  e.  ( F
" ( `' N `  i ) )  <->  w  e.  ( F " ( `' N `  ( N `
 suc  j )
) ) ) )
4241rspcev 2907 . . . . . 6  |-  ( ( ( N `  suc  j )  e.  NN0  /\  w  e.  ( F
" ( `' N `  ( N `  suc  j ) ) ) )  ->  E. i  e.  NN0  w  e.  ( F " ( `' N `  i ) ) )
4321, 38, 42syl2anc 411 . . . . 5  |-  ( ( ( ph  /\  w  e.  A )  /\  (
j  e.  om  /\  w  =  ( F `  j ) ) )  ->  E. i  e.  NN0  w  e.  ( F " ( `' N `  i ) ) )
4414, 43rexlimddv 2653 . . . 4  |-  ( (
ph  /\  w  e.  A )  ->  E. i  e.  NN0  w  e.  ( F " ( `' N `  i ) ) )
45 eliun 3969 . . . 4  |-  ( w  e.  U_ i  e. 
NN0  ( F "
( `' N `  i ) )  <->  E. i  e.  NN0  w  e.  ( F " ( `' N `  i ) ) )
4644, 45sylibr 134 . . 3  |-  ( (
ph  /\  w  e.  A )  ->  w  e.  U_ i  e.  NN0  ( F " ( `' N `  i ) ) )
478rneqi 4952 . . . . . . 7  |-  ran  L  =  ran  U_ i  e.  NN0  ( H `  i )
48 rniun 5139 . . . . . . 7  |-  ran  U_ i  e.  NN0  ( H `  i )  =  U_ i  e.  NN0  ran  ( H `  i )
4947, 48eqtri 2250 . . . . . 6  |-  ran  L  =  U_ i  e.  NN0  ran  ( H `  i
)
501adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  i  e.  NN0 )  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y
)
512adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  i  e.  NN0 )  ->  F : om -onto-> A )
523adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  i  e.  NN0 )  ->  A. n  e.  om  E. k  e. 
om  A. j  e.  suc  n ( F `  k )  =/=  ( F `  j )
)
53 simpr 110 . . . . . . . . 9  |-  ( (
ph  /\  i  e.  NN0 )  ->  i  e.  NN0 )
5450, 51, 52, 4, 5, 6, 7, 53ennnfonelemhf1o 12984 . . . . . . . 8  |-  ( (
ph  /\  i  e.  NN0 )  ->  ( H `  i ) : dom  ( H `  i ) -1-1-onto-> ( F " ( `' N `  i ) ) )
55 f1ofo 5579 . . . . . . . 8  |-  ( ( H `  i ) : dom  ( H `
 i ) -1-1-onto-> ( F
" ( `' N `  i ) )  -> 
( H `  i
) : dom  ( H `  i ) -onto->
( F " ( `' N `  i ) ) )
56 forn 5551 . . . . . . . 8  |-  ( ( H `  i ) : dom  ( H `
 i ) -onto-> ( F " ( `' N `  i ) )  ->  ran  ( H `
 i )  =  ( F " ( `' N `  i ) ) )
5754, 55, 563syl 17 . . . . . . 7  |-  ( (
ph  /\  i  e.  NN0 )  ->  ran  ( H `
 i )  =  ( F " ( `' N `  i ) ) )
5857iuneq2dv 3986 . . . . . 6  |-  ( ph  ->  U_ i  e.  NN0  ran  ( H `  i
)  =  U_ i  e.  NN0  ( F "
( `' N `  i ) ) )
5949, 58eqtrid 2274 . . . . 5  |-  ( ph  ->  ran  L  =  U_ i  e.  NN0  ( F
" ( `' N `  i ) ) )
6059eleq2d 2299 . . . 4  |-  ( ph  ->  ( w  e.  ran  L  <-> 
w  e.  U_ i  e.  NN0  ( F "
( `' N `  i ) ) ) )
6160adantr 276 . . 3  |-  ( (
ph  /\  w  e.  A )  ->  (
w  e.  ran  L  <->  w  e.  U_ i  e. 
NN0  ( F "
( `' N `  i ) ) ) )
6246, 61mpbird 167 . 2  |-  ( (
ph  /\  w  e.  A )  ->  w  e.  ran  L )
6312, 62eqelssd 3243 1  |-  ( ph  ->  ran  L  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105  DECID wdc 839    = wceq 1395    e. wcel 2200    =/= wne 2400   A.wral 2508   E.wrex 2509    u. cun 3195    C_ wss 3197   (/)c0 3491   ifcif 3602   {csn 3666   <.cop 3669   U_ciun 3965    |-> cmpt 4145   Ord word 4453   suc csuc 4456   omcom 4682   `'ccnv 4718   dom cdm 4719   ran crn 4720   "cima 4722    Fn wfn 5313   -->wf 5314   -1-1->wf1 5315   -onto->wfo 5316   -1-1-onto->wf1o 5317   ` cfv 5318  (class class class)co 6001    e. cmpo 6003  freccfrec 6536    ^pm cpm 6796   0cc0 7999   1c1 8000    + caddc 8002    - cmin 8317   NN0cn0 9369   ZZcz 9446   ZZ>=cuz 9722    seqcseq 10669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-frec 6537  df-pm 6798  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-inn 9111  df-n0 9370  df-z 9447  df-uz 9723  df-seqfrec 10670
This theorem is referenced by:  ennnfonelemen  12992
  Copyright terms: Public domain W3C validator