ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfonelemrn Unicode version

Theorem ennnfonelemrn 12352
Description: Lemma for ennnfone 12358. 
L is onto  A. (Contributed by Jim Kingdon, 16-Jul-2023.)
Hypotheses
Ref Expression
ennnfonelemh.dceq  |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
ennnfonelemh.f  |-  ( ph  ->  F : om -onto-> A
)
ennnfonelemh.ne  |-  ( ph  ->  A. n  e.  om  E. k  e.  om  A. j  e.  suc  n ( F `  k )  =/=  ( F `  j ) )
ennnfonelemh.g  |-  G  =  ( x  e.  ( A  ^pm  om ) ,  y  e.  om  |->  if ( ( F `  y )  e.  ( F " y ) ,  x ,  ( x  u.  { <. dom  x ,  ( F `
 y ) >. } ) ) )
ennnfonelemh.n  |-  N  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
ennnfonelemh.j  |-  J  =  ( x  e.  NN0  |->  if ( x  =  0 ,  (/) ,  ( `' N `  ( x  -  1 ) ) ) )
ennnfonelemh.h  |-  H  =  seq 0 ( G ,  J )
ennnfone.l  |-  L  = 
U_ i  e.  NN0  ( H `  i )
Assertion
Ref Expression
ennnfonelemrn  |-  ( ph  ->  ran  L  =  A )
Distinct variable groups:    A, j, x, y    i, F, j, x, y, k    n, F, k    j, G    i, H, j, x, y, k   
j, J    i, N, j, x, y, k    ph, i,
j, x, y, k   
j, n
Allowed substitution hints:    ph( n)    A( i,
k, n)    G( x, y, i, k, n)    H( n)    J( x, y, i, k, n)    L( x, y, i, j, k, n)    N( n)

Proof of Theorem ennnfonelemrn
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 ennnfonelemh.dceq . . . 4  |-  ( ph  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y )
2 ennnfonelemh.f . . . 4  |-  ( ph  ->  F : om -onto-> A
)
3 ennnfonelemh.ne . . . 4  |-  ( ph  ->  A. n  e.  om  E. k  e.  om  A. j  e.  suc  n ( F `  k )  =/=  ( F `  j ) )
4 ennnfonelemh.g . . . 4  |-  G  =  ( x  e.  ( A  ^pm  om ) ,  y  e.  om  |->  if ( ( F `  y )  e.  ( F " y ) ,  x ,  ( x  u.  { <. dom  x ,  ( F `
 y ) >. } ) ) )
5 ennnfonelemh.n . . . 4  |-  N  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )
6 ennnfonelemh.j . . . 4  |-  J  =  ( x  e.  NN0  |->  if ( x  =  0 ,  (/) ,  ( `' N `  ( x  -  1 ) ) ) )
7 ennnfonelemh.h . . . 4  |-  H  =  seq 0 ( G ,  J )
8 ennnfone.l . . . 4  |-  L  = 
U_ i  e.  NN0  ( H `  i )
91, 2, 3, 4, 5, 6, 7, 8ennnfonelemf1 12351 . . 3  |-  ( ph  ->  L : dom  L -1-1-> A )
10 f1f 5393 . . 3  |-  ( L : dom  L -1-1-> A  ->  L : dom  L --> A )
11 frn 5346 . . 3  |-  ( L : dom  L --> A  ->  ran  L  C_  A )
129, 10, 113syl 17 . 2  |-  ( ph  ->  ran  L  C_  A
)
13 foelrn 5721 . . . . . 6  |-  ( ( F : om -onto-> A  /\  w  e.  A
)  ->  E. j  e.  om  w  =  ( F `  j ) )
142, 13sylan 281 . . . . 5  |-  ( (
ph  /\  w  e.  A )  ->  E. j  e.  om  w  =  ( F `  j ) )
15 0zd 9203 . . . . . . . 8  |-  ( ( ( ph  /\  w  e.  A )  /\  (
j  e.  om  /\  w  =  ( F `  j ) ) )  ->  0  e.  ZZ )
16 simprl 521 . . . . . . . . 9  |-  ( ( ( ph  /\  w  e.  A )  /\  (
j  e.  om  /\  w  =  ( F `  j ) ) )  ->  j  e.  om )
17 peano2 4572 . . . . . . . . 9  |-  ( j  e.  om  ->  suc  j  e.  om )
1816, 17syl 14 . . . . . . . 8  |-  ( ( ( ph  /\  w  e.  A )  /\  (
j  e.  om  /\  w  =  ( F `  j ) ) )  ->  suc  j  e.  om )
1915, 5, 18frec2uzuzd 10337 . . . . . . 7  |-  ( ( ( ph  /\  w  e.  A )  /\  (
j  e.  om  /\  w  =  ( F `  j ) ) )  ->  ( N `  suc  j )  e.  (
ZZ>= `  0 ) )
20 nn0uz 9500 . . . . . . 7  |-  NN0  =  ( ZZ>= `  0 )
2119, 20eleqtrrdi 2260 . . . . . 6  |-  ( ( ( ph  /\  w  e.  A )  /\  (
j  e.  om  /\  w  =  ( F `  j ) ) )  ->  ( N `  suc  j )  e.  NN0 )
22 fofn 5412 . . . . . . . . . 10  |-  ( F : om -onto-> A  ->  F  Fn  om )
232, 22syl 14 . . . . . . . . 9  |-  ( ph  ->  F  Fn  om )
2423ad2antrr 480 . . . . . . . 8  |-  ( ( ( ph  /\  w  e.  A )  /\  (
j  e.  om  /\  w  =  ( F `  j ) ) )  ->  F  Fn  om )
25 ordom 4584 . . . . . . . . 9  |-  Ord  om
26 ordsucss 4481 . . . . . . . . 9  |-  ( Ord 
om  ->  ( j  e. 
om  ->  suc  j  C_  om ) )
2725, 16, 26mpsyl 65 . . . . . . . 8  |-  ( ( ( ph  /\  w  e.  A )  /\  (
j  e.  om  /\  w  =  ( F `  j ) ) )  ->  suc  j  C_  om )
28 vex 2729 . . . . . . . . . 10  |-  j  e. 
_V
2928sucid 4395 . . . . . . . . 9  |-  j  e. 
suc  j
3029a1i 9 . . . . . . . 8  |-  ( ( ( ph  /\  w  e.  A )  /\  (
j  e.  om  /\  w  =  ( F `  j ) ) )  ->  j  e.  suc  j )
31 fnfvima 5719 . . . . . . . 8  |-  ( ( F  Fn  om  /\  suc  j  C_  om  /\  j  e.  suc  j )  ->  ( F `  j )  e.  ( F " suc  j
) )
3224, 27, 30, 31syl3anc 1228 . . . . . . 7  |-  ( ( ( ph  /\  w  e.  A )  /\  (
j  e.  om  /\  w  =  ( F `  j ) ) )  ->  ( F `  j )  e.  ( F " suc  j
) )
33 simprr 522 . . . . . . 7  |-  ( ( ( ph  /\  w  e.  A )  /\  (
j  e.  om  /\  w  =  ( F `  j ) ) )  ->  w  =  ( F `  j ) )
3415, 5frec2uzf1od 10341 . . . . . . . . 9  |-  ( ( ( ph  /\  w  e.  A )  /\  (
j  e.  om  /\  w  =  ( F `  j ) ) )  ->  N : om -1-1-onto-> ( ZZ>=
`  0 ) )
35 f1ocnvfv1 5745 . . . . . . . . 9  |-  ( ( N : om -1-1-onto-> ( ZZ>= `  0 )  /\  suc  j  e.  om )  ->  ( `' N `  ( N `  suc  j ) )  =  suc  j )
3634, 18, 35syl2anc 409 . . . . . . . 8  |-  ( ( ( ph  /\  w  e.  A )  /\  (
j  e.  om  /\  w  =  ( F `  j ) ) )  ->  ( `' N `  ( N `  suc  j ) )  =  suc  j )
3736imaeq2d 4946 . . . . . . 7  |-  ( ( ( ph  /\  w  e.  A )  /\  (
j  e.  om  /\  w  =  ( F `  j ) ) )  ->  ( F "
( `' N `  ( N `  suc  j
) ) )  =  ( F " suc  j ) )
3832, 33, 373eltr4d 2250 . . . . . 6  |-  ( ( ( ph  /\  w  e.  A )  /\  (
j  e.  om  /\  w  =  ( F `  j ) ) )  ->  w  e.  ( F " ( `' N `  ( N `
 suc  j )
) ) )
39 fveq2 5486 . . . . . . . . 9  |-  ( i  =  ( N `  suc  j )  ->  ( `' N `  i )  =  ( `' N `  ( N `  suc  j ) ) )
4039imaeq2d 4946 . . . . . . . 8  |-  ( i  =  ( N `  suc  j )  ->  ( F " ( `' N `  i ) )  =  ( F " ( `' N `  ( N `
 suc  j )
) ) )
4140eleq2d 2236 . . . . . . 7  |-  ( i  =  ( N `  suc  j )  ->  (
w  e.  ( F
" ( `' N `  i ) )  <->  w  e.  ( F " ( `' N `  ( N `
 suc  j )
) ) ) )
4241rspcev 2830 . . . . . 6  |-  ( ( ( N `  suc  j )  e.  NN0  /\  w  e.  ( F
" ( `' N `  ( N `  suc  j ) ) ) )  ->  E. i  e.  NN0  w  e.  ( F " ( `' N `  i ) ) )
4321, 38, 42syl2anc 409 . . . . 5  |-  ( ( ( ph  /\  w  e.  A )  /\  (
j  e.  om  /\  w  =  ( F `  j ) ) )  ->  E. i  e.  NN0  w  e.  ( F " ( `' N `  i ) ) )
4414, 43rexlimddv 2588 . . . 4  |-  ( (
ph  /\  w  e.  A )  ->  E. i  e.  NN0  w  e.  ( F " ( `' N `  i ) ) )
45 eliun 3870 . . . 4  |-  ( w  e.  U_ i  e. 
NN0  ( F "
( `' N `  i ) )  <->  E. i  e.  NN0  w  e.  ( F " ( `' N `  i ) ) )
4644, 45sylibr 133 . . 3  |-  ( (
ph  /\  w  e.  A )  ->  w  e.  U_ i  e.  NN0  ( F " ( `' N `  i ) ) )
478rneqi 4832 . . . . . . 7  |-  ran  L  =  ran  U_ i  e.  NN0  ( H `  i )
48 rniun 5014 . . . . . . 7  |-  ran  U_ i  e.  NN0  ( H `  i )  =  U_ i  e.  NN0  ran  ( H `  i )
4947, 48eqtri 2186 . . . . . 6  |-  ran  L  =  U_ i  e.  NN0  ran  ( H `  i
)
501adantr 274 . . . . . . . . 9  |-  ( (
ph  /\  i  e.  NN0 )  ->  A. x  e.  A  A. y  e.  A DECID  x  =  y
)
512adantr 274 . . . . . . . . 9  |-  ( (
ph  /\  i  e.  NN0 )  ->  F : om -onto-> A )
523adantr 274 . . . . . . . . 9  |-  ( (
ph  /\  i  e.  NN0 )  ->  A. n  e.  om  E. k  e. 
om  A. j  e.  suc  n ( F `  k )  =/=  ( F `  j )
)
53 simpr 109 . . . . . . . . 9  |-  ( (
ph  /\  i  e.  NN0 )  ->  i  e.  NN0 )
5450, 51, 52, 4, 5, 6, 7, 53ennnfonelemhf1o 12346 . . . . . . . 8  |-  ( (
ph  /\  i  e.  NN0 )  ->  ( H `  i ) : dom  ( H `  i ) -1-1-onto-> ( F " ( `' N `  i ) ) )
55 f1ofo 5439 . . . . . . . 8  |-  ( ( H `  i ) : dom  ( H `
 i ) -1-1-onto-> ( F
" ( `' N `  i ) )  -> 
( H `  i
) : dom  ( H `  i ) -onto->
( F " ( `' N `  i ) ) )
56 forn 5413 . . . . . . . 8  |-  ( ( H `  i ) : dom  ( H `
 i ) -onto-> ( F " ( `' N `  i ) )  ->  ran  ( H `
 i )  =  ( F " ( `' N `  i ) ) )
5754, 55, 563syl 17 . . . . . . 7  |-  ( (
ph  /\  i  e.  NN0 )  ->  ran  ( H `
 i )  =  ( F " ( `' N `  i ) ) )
5857iuneq2dv 3887 . . . . . 6  |-  ( ph  ->  U_ i  e.  NN0  ran  ( H `  i
)  =  U_ i  e.  NN0  ( F "
( `' N `  i ) ) )
5949, 58syl5eq 2211 . . . . 5  |-  ( ph  ->  ran  L  =  U_ i  e.  NN0  ( F
" ( `' N `  i ) ) )
6059eleq2d 2236 . . . 4  |-  ( ph  ->  ( w  e.  ran  L  <-> 
w  e.  U_ i  e.  NN0  ( F "
( `' N `  i ) ) ) )
6160adantr 274 . . 3  |-  ( (
ph  /\  w  e.  A )  ->  (
w  e.  ran  L  <->  w  e.  U_ i  e. 
NN0  ( F "
( `' N `  i ) ) ) )
6246, 61mpbird 166 . 2  |-  ( (
ph  /\  w  e.  A )  ->  w  e.  ran  L )
6312, 62eqelssd 3161 1  |-  ( ph  ->  ran  L  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104  DECID wdc 824    = wceq 1343    e. wcel 2136    =/= wne 2336   A.wral 2444   E.wrex 2445    u. cun 3114    C_ wss 3116   (/)c0 3409   ifcif 3520   {csn 3576   <.cop 3579   U_ciun 3866    |-> cmpt 4043   Ord word 4340   suc csuc 4343   omcom 4567   `'ccnv 4603   dom cdm 4604   ran crn 4605   "cima 4607    Fn wfn 5183   -->wf 5184   -1-1->wf1 5185   -onto->wfo 5186   -1-1-onto->wf1o 5187   ` cfv 5188  (class class class)co 5842    e. cmpo 5844  freccfrec 6358    ^pm cpm 6615   0cc0 7753   1c1 7754    + caddc 7756    - cmin 8069   NN0cn0 9114   ZZcz 9191   ZZ>=cuz 9466    seqcseq 10380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-ltadd 7869
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-pm 6617  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-inn 8858  df-n0 9115  df-z 9192  df-uz 9467  df-seqfrec 10381
This theorem is referenced by:  ennnfonelemen  12354
  Copyright terms: Public domain W3C validator