ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oav2 Unicode version

Theorem oav2 6407
Description: Value of ordinal addition. (Contributed by Mario Carneiro and Jim Kingdon, 12-Aug-2019.)
Assertion
Ref Expression
oav2  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  +o  B
)  =  ( A  u.  U_ x  e.  B  suc  ( A  +o  x ) ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem oav2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 oafnex 6388 . . 3  |-  ( y  e.  _V  |->  suc  y
)  Fn  _V
2 rdgival 6326 . . 3  |-  ( ( ( y  e.  _V  |->  suc  y )  Fn  _V  /\  A  e.  On  /\  B  e.  On )  ->  ( rec ( ( y  e.  _V  |->  suc  y ) ,  A
) `  B )  =  ( A  u.  U_ x  e.  B  ( ( y  e.  _V  |->  suc  y ) `  ( rec ( ( y  e. 
_V  |->  suc  y ) ,  A ) `  x
) ) ) )
31, 2mp3an1 1306 . 2  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( rec ( ( y  e.  _V  |->  suc  y ) ,  A
) `  B )  =  ( A  u.  U_ x  e.  B  ( ( y  e.  _V  |->  suc  y ) `  ( rec ( ( y  e. 
_V  |->  suc  y ) ,  A ) `  x
) ) ) )
4 oav 6398 . 2  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  +o  B
)  =  ( rec ( ( y  e. 
_V  |->  suc  y ) ,  A ) `  B
) )
5 onelon 4344 . . . . . 6  |-  ( ( B  e.  On  /\  x  e.  B )  ->  x  e.  On )
6 vex 2715 . . . . . . . . . 10  |-  x  e. 
_V
7 oaexg 6392 . . . . . . . . . 10  |-  ( ( A  e.  On  /\  x  e.  _V )  ->  ( A  +o  x
)  e.  _V )
86, 7mpan2 422 . . . . . . . . 9  |-  ( A  e.  On  ->  ( A  +o  x )  e. 
_V )
9 sucexg 4456 . . . . . . . . . 10  |-  ( ( A  +o  x )  e.  _V  ->  suc  ( A  +o  x
)  e.  _V )
108, 9syl 14 . . . . . . . . 9  |-  ( A  e.  On  ->  suc  ( A  +o  x
)  e.  _V )
11 suceq 4362 . . . . . . . . . 10  |-  ( y  =  ( A  +o  x )  ->  suc  y  =  suc  ( A  +o  x ) )
12 eqid 2157 . . . . . . . . . 10  |-  ( y  e.  _V  |->  suc  y
)  =  ( y  e.  _V  |->  suc  y
)
1311, 12fvmptg 5543 . . . . . . . . 9  |-  ( ( ( A  +o  x
)  e.  _V  /\  suc  ( A  +o  x
)  e.  _V )  ->  ( ( y  e. 
_V  |->  suc  y ) `  ( A  +o  x
) )  =  suc  ( A  +o  x
) )
148, 10, 13syl2anc 409 . . . . . . . 8  |-  ( A  e.  On  ->  (
( y  e.  _V  |->  suc  y ) `  ( A  +o  x ) )  =  suc  ( A  +o  x ) )
1514adantr 274 . . . . . . 7  |-  ( ( A  e.  On  /\  x  e.  On )  ->  ( ( y  e. 
_V  |->  suc  y ) `  ( A  +o  x
) )  =  suc  ( A  +o  x
) )
16 oav 6398 . . . . . . . 8  |-  ( ( A  e.  On  /\  x  e.  On )  ->  ( A  +o  x
)  =  ( rec ( ( y  e. 
_V  |->  suc  y ) ,  A ) `  x
) )
1716fveq2d 5471 . . . . . . 7  |-  ( ( A  e.  On  /\  x  e.  On )  ->  ( ( y  e. 
_V  |->  suc  y ) `  ( A  +o  x
) )  =  ( ( y  e.  _V  |->  suc  y ) `  ( rec ( ( y  e. 
_V  |->  suc  y ) ,  A ) `  x
) ) )
1815, 17eqtr3d 2192 . . . . . 6  |-  ( ( A  e.  On  /\  x  e.  On )  ->  suc  ( A  +o  x )  =  ( ( y  e.  _V  |->  suc  y ) `  ( rec ( ( y  e. 
_V  |->  suc  y ) ,  A ) `  x
) ) )
195, 18sylan2 284 . . . . 5  |-  ( ( A  e.  On  /\  ( B  e.  On  /\  x  e.  B ) )  ->  suc  ( A  +o  x )  =  ( ( y  e. 
_V  |->  suc  y ) `  ( rec ( ( y  e.  _V  |->  suc  y ) ,  A
) `  x )
) )
2019anassrs 398 . . . 4  |-  ( ( ( A  e.  On  /\  B  e.  On )  /\  x  e.  B
)  ->  suc  ( A  +o  x )  =  ( ( y  e. 
_V  |->  suc  y ) `  ( rec ( ( y  e.  _V  |->  suc  y ) ,  A
) `  x )
) )
2120iuneq2dv 3870 . . 3  |-  ( ( A  e.  On  /\  B  e.  On )  ->  U_ x  e.  B  suc  ( A  +o  x
)  =  U_ x  e.  B  ( (
y  e.  _V  |->  suc  y ) `  ( rec ( ( y  e. 
_V  |->  suc  y ) ,  A ) `  x
) ) )
2221uneq2d 3261 . 2  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  u.  U_ x  e.  B  suc  ( A  +o  x
) )  =  ( A  u.  U_ x  e.  B  ( (
y  e.  _V  |->  suc  y ) `  ( rec ( ( y  e. 
_V  |->  suc  y ) ,  A ) `  x
) ) ) )
233, 4, 223eqtr4d 2200 1  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  +o  B
)  =  ( A  u.  U_ x  e.  B  suc  ( A  +o  x ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1335    e. wcel 2128   _Vcvv 2712    u. cun 3100   U_ciun 3849    |-> cmpt 4025   Oncon0 4323   suc csuc 4325    Fn wfn 5164   ` cfv 5169  (class class class)co 5821   reccrdg 6313    +o coa 6357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4495
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-tr 4063  df-id 4253  df-iord 4326  df-on 4328  df-suc 4331  df-xp 4591  df-rel 4592  df-cnv 4593  df-co 4594  df-dm 4595  df-rn 4596  df-res 4597  df-ima 4598  df-iota 5134  df-fun 5171  df-fn 5172  df-f 5173  df-f1 5174  df-fo 5175  df-f1o 5176  df-fv 5177  df-ov 5824  df-oprab 5825  df-mpo 5826  df-1st 6085  df-2nd 6086  df-recs 6249  df-irdg 6314  df-oadd 6364
This theorem is referenced by:  oasuc  6408
  Copyright terms: Public domain W3C validator