ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oav2 Unicode version

Theorem oav2 6530
Description: Value of ordinal addition. (Contributed by Mario Carneiro and Jim Kingdon, 12-Aug-2019.)
Assertion
Ref Expression
oav2  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  +o  B
)  =  ( A  u.  U_ x  e.  B  suc  ( A  +o  x ) ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem oav2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 oafnex 6511 . . 3  |-  ( y  e.  _V  |->  suc  y
)  Fn  _V
2 rdgival 6449 . . 3  |-  ( ( ( y  e.  _V  |->  suc  y )  Fn  _V  /\  A  e.  On  /\  B  e.  On )  ->  ( rec ( ( y  e.  _V  |->  suc  y ) ,  A
) `  B )  =  ( A  u.  U_ x  e.  B  ( ( y  e.  _V  |->  suc  y ) `  ( rec ( ( y  e. 
_V  |->  suc  y ) ,  A ) `  x
) ) ) )
31, 2mp3an1 1335 . 2  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( rec ( ( y  e.  _V  |->  suc  y ) ,  A
) `  B )  =  ( A  u.  U_ x  e.  B  ( ( y  e.  _V  |->  suc  y ) `  ( rec ( ( y  e. 
_V  |->  suc  y ) ,  A ) `  x
) ) ) )
4 oav 6521 . 2  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  +o  B
)  =  ( rec ( ( y  e. 
_V  |->  suc  y ) ,  A ) `  B
) )
5 onelon 4420 . . . . . 6  |-  ( ( B  e.  On  /\  x  e.  B )  ->  x  e.  On )
6 vex 2766 . . . . . . . . . 10  |-  x  e. 
_V
7 oaexg 6515 . . . . . . . . . 10  |-  ( ( A  e.  On  /\  x  e.  _V )  ->  ( A  +o  x
)  e.  _V )
86, 7mpan2 425 . . . . . . . . 9  |-  ( A  e.  On  ->  ( A  +o  x )  e. 
_V )
9 sucexg 4535 . . . . . . . . . 10  |-  ( ( A  +o  x )  e.  _V  ->  suc  ( A  +o  x
)  e.  _V )
108, 9syl 14 . . . . . . . . 9  |-  ( A  e.  On  ->  suc  ( A  +o  x
)  e.  _V )
11 suceq 4438 . . . . . . . . . 10  |-  ( y  =  ( A  +o  x )  ->  suc  y  =  suc  ( A  +o  x ) )
12 eqid 2196 . . . . . . . . . 10  |-  ( y  e.  _V  |->  suc  y
)  =  ( y  e.  _V  |->  suc  y
)
1311, 12fvmptg 5640 . . . . . . . . 9  |-  ( ( ( A  +o  x
)  e.  _V  /\  suc  ( A  +o  x
)  e.  _V )  ->  ( ( y  e. 
_V  |->  suc  y ) `  ( A  +o  x
) )  =  suc  ( A  +o  x
) )
148, 10, 13syl2anc 411 . . . . . . . 8  |-  ( A  e.  On  ->  (
( y  e.  _V  |->  suc  y ) `  ( A  +o  x ) )  =  suc  ( A  +o  x ) )
1514adantr 276 . . . . . . 7  |-  ( ( A  e.  On  /\  x  e.  On )  ->  ( ( y  e. 
_V  |->  suc  y ) `  ( A  +o  x
) )  =  suc  ( A  +o  x
) )
16 oav 6521 . . . . . . . 8  |-  ( ( A  e.  On  /\  x  e.  On )  ->  ( A  +o  x
)  =  ( rec ( ( y  e. 
_V  |->  suc  y ) ,  A ) `  x
) )
1716fveq2d 5565 . . . . . . 7  |-  ( ( A  e.  On  /\  x  e.  On )  ->  ( ( y  e. 
_V  |->  suc  y ) `  ( A  +o  x
) )  =  ( ( y  e.  _V  |->  suc  y ) `  ( rec ( ( y  e. 
_V  |->  suc  y ) ,  A ) `  x
) ) )
1815, 17eqtr3d 2231 . . . . . 6  |-  ( ( A  e.  On  /\  x  e.  On )  ->  suc  ( A  +o  x )  =  ( ( y  e.  _V  |->  suc  y ) `  ( rec ( ( y  e. 
_V  |->  suc  y ) ,  A ) `  x
) ) )
195, 18sylan2 286 . . . . 5  |-  ( ( A  e.  On  /\  ( B  e.  On  /\  x  e.  B ) )  ->  suc  ( A  +o  x )  =  ( ( y  e. 
_V  |->  suc  y ) `  ( rec ( ( y  e.  _V  |->  suc  y ) ,  A
) `  x )
) )
2019anassrs 400 . . . 4  |-  ( ( ( A  e.  On  /\  B  e.  On )  /\  x  e.  B
)  ->  suc  ( A  +o  x )  =  ( ( y  e. 
_V  |->  suc  y ) `  ( rec ( ( y  e.  _V  |->  suc  y ) ,  A
) `  x )
) )
2120iuneq2dv 3938 . . 3  |-  ( ( A  e.  On  /\  B  e.  On )  ->  U_ x  e.  B  suc  ( A  +o  x
)  =  U_ x  e.  B  ( (
y  e.  _V  |->  suc  y ) `  ( rec ( ( y  e. 
_V  |->  suc  y ) ,  A ) `  x
) ) )
2221uneq2d 3318 . 2  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  u.  U_ x  e.  B  suc  ( A  +o  x
) )  =  ( A  u.  U_ x  e.  B  ( (
y  e.  _V  |->  suc  y ) `  ( rec ( ( y  e. 
_V  |->  suc  y ) ,  A ) `  x
) ) ) )
233, 4, 223eqtr4d 2239 1  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  +o  B
)  =  ( A  u.  U_ x  e.  B  suc  ( A  +o  x ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   _Vcvv 2763    u. cun 3155   U_ciun 3917    |-> cmpt 4095   Oncon0 4399   suc csuc 4401    Fn wfn 5254   ` cfv 5259  (class class class)co 5925   reccrdg 6436    +o coa 6480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-suc 4407  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-oadd 6487
This theorem is referenced by:  oasuc  6531
  Copyright terms: Public domain W3C validator