Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > oav2 | Unicode version |
Description: Value of ordinal addition. (Contributed by Mario Carneiro and Jim Kingdon, 12-Aug-2019.) |
Ref | Expression |
---|---|
oav2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oafnex 6388 | . . 3 | |
2 | rdgival 6326 | . . 3 | |
3 | 1, 2 | mp3an1 1306 | . 2 |
4 | oav 6398 | . 2 | |
5 | onelon 4344 | . . . . . 6 | |
6 | vex 2715 | . . . . . . . . . 10 | |
7 | oaexg 6392 | . . . . . . . . . 10 | |
8 | 6, 7 | mpan2 422 | . . . . . . . . 9 |
9 | sucexg 4456 | . . . . . . . . . 10 | |
10 | 8, 9 | syl 14 | . . . . . . . . 9 |
11 | suceq 4362 | . . . . . . . . . 10 | |
12 | eqid 2157 | . . . . . . . . . 10 | |
13 | 11, 12 | fvmptg 5543 | . . . . . . . . 9 |
14 | 8, 10, 13 | syl2anc 409 | . . . . . . . 8 |
15 | 14 | adantr 274 | . . . . . . 7 |
16 | oav 6398 | . . . . . . . 8 | |
17 | 16 | fveq2d 5471 | . . . . . . 7 |
18 | 15, 17 | eqtr3d 2192 | . . . . . 6 |
19 | 5, 18 | sylan2 284 | . . . . 5 |
20 | 19 | anassrs 398 | . . . 4 |
21 | 20 | iuneq2dv 3870 | . . 3 |
22 | 21 | uneq2d 3261 | . 2 |
23 | 3, 4, 22 | 3eqtr4d 2200 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1335 wcel 2128 cvv 2712 cun 3100 ciun 3849 cmpt 4025 con0 4323 csuc 4325 wfn 5164 cfv 5169 (class class class)co 5821 crdg 6313 coa 6357 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4079 ax-sep 4082 ax-pow 4135 ax-pr 4169 ax-un 4393 ax-setind 4495 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-tr 4063 df-id 4253 df-iord 4326 df-on 4328 df-suc 4331 df-xp 4591 df-rel 4592 df-cnv 4593 df-co 4594 df-dm 4595 df-rn 4596 df-res 4597 df-ima 4598 df-iota 5134 df-fun 5171 df-fn 5172 df-f 5173 df-f1 5174 df-fo 5175 df-f1o 5176 df-fv 5177 df-ov 5824 df-oprab 5825 df-mpo 5826 df-1st 6085 df-2nd 6086 df-recs 6249 df-irdg 6314 df-oadd 6364 |
This theorem is referenced by: oasuc 6408 |
Copyright terms: Public domain | W3C validator |