| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tgidm | Unicode version | ||
| Description: The topology generator function is idempotent. (Contributed by NM, 18-Jul-2006.) (Revised by Mario Carneiro, 2-Sep-2015.) |
| Ref | Expression |
|---|---|
| tgidm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tgvalex 13210 |
. . . . 5
| |
| 2 | eltg3 14644 |
. . . . 5
| |
| 3 | 1, 2 | syl 14 |
. . . 4
|
| 4 | uniiun 3995 |
. . . . . . . . . 10
| |
| 5 | simpr 110 |
. . . . . . . . . . . . 13
| |
| 6 | 5 | sselda 3201 |
. . . . . . . . . . . 12
|
| 7 | eltg4i 14642 |
. . . . . . . . . . . 12
| |
| 8 | 6, 7 | syl 14 |
. . . . . . . . . . 11
|
| 9 | 8 | iuneq2dv 3962 |
. . . . . . . . . 10
|
| 10 | 4, 9 | eqtrid 2252 |
. . . . . . . . 9
|
| 11 | iuncom4 3948 |
. . . . . . . . 9
| |
| 12 | 10, 11 | eqtrdi 2256 |
. . . . . . . 8
|
| 13 | inss1 3401 |
. . . . . . . . . . . 12
| |
| 14 | 13 | rgenw 2563 |
. . . . . . . . . . 11
|
| 15 | iunss 3982 |
. . . . . . . . . . 11
| |
| 16 | 14, 15 | mpbir 146 |
. . . . . . . . . 10
|
| 17 | 16 | a1i 9 |
. . . . . . . . 9
|
| 18 | eltg3i 14643 |
. . . . . . . . 9
| |
| 19 | 17, 18 | sylan2 286 |
. . . . . . . 8
|
| 20 | 12, 19 | eqeltrd 2284 |
. . . . . . 7
|
| 21 | eleq1 2270 |
. . . . . . 7
| |
| 22 | 20, 21 | syl5ibrcom 157 |
. . . . . 6
|
| 23 | 22 | expimpd 363 |
. . . . 5
|
| 24 | 23 | exlimdv 1843 |
. . . 4
|
| 25 | 3, 24 | sylbid 150 |
. . 3
|
| 26 | 25 | ssrdv 3207 |
. 2
|
| 27 | bastg 14648 |
. . 3
| |
| 28 | tgss 14650 |
. . 3
| |
| 29 | 1, 27, 28 | syl2anc 411 |
. 2
|
| 30 | 26, 29 | eqssd 3218 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-sbc 3006 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-iota 5251 df-fun 5292 df-fv 5298 df-topgen 13207 |
| This theorem is referenced by: tgss3 14665 txbasval 14854 |
| Copyright terms: Public domain | W3C validator |