Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > tgidm | Unicode version |
Description: The topology generator function is idempotent. (Contributed by NM, 18-Jul-2006.) (Revised by Mario Carneiro, 2-Sep-2015.) |
Ref | Expression |
---|---|
tgidm |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgvalex 12844 | . . . . 5 | |
2 | eltg3 12851 | . . . . 5 | |
3 | 1, 2 | syl 14 | . . . 4 |
4 | uniiun 3926 | . . . . . . . . . 10 | |
5 | simpr 109 | . . . . . . . . . . . . 13 | |
6 | 5 | sselda 3147 | . . . . . . . . . . . 12 |
7 | eltg4i 12849 | . . . . . . . . . . . 12 | |
8 | 6, 7 | syl 14 | . . . . . . . . . . 11 |
9 | 8 | iuneq2dv 3894 | . . . . . . . . . 10 |
10 | 4, 9 | eqtrid 2215 | . . . . . . . . 9 |
11 | iuncom4 3880 | . . . . . . . . 9 | |
12 | 10, 11 | eqtrdi 2219 | . . . . . . . 8 |
13 | inss1 3347 | . . . . . . . . . . . 12 | |
14 | 13 | rgenw 2525 | . . . . . . . . . . 11 |
15 | iunss 3914 | . . . . . . . . . . 11 | |
16 | 14, 15 | mpbir 145 | . . . . . . . . . 10 |
17 | 16 | a1i 9 | . . . . . . . . 9 |
18 | eltg3i 12850 | . . . . . . . . 9 | |
19 | 17, 18 | sylan2 284 | . . . . . . . 8 |
20 | 12, 19 | eqeltrd 2247 | . . . . . . 7 |
21 | eleq1 2233 | . . . . . . 7 | |
22 | 20, 21 | syl5ibrcom 156 | . . . . . 6 |
23 | 22 | expimpd 361 | . . . . 5 |
24 | 23 | exlimdv 1812 | . . . 4 |
25 | 3, 24 | sylbid 149 | . . 3 |
26 | 25 | ssrdv 3153 | . 2 |
27 | bastg 12855 | . . 3 | |
28 | tgss 12857 | . . 3 | |
29 | 1, 27, 28 | syl2anc 409 | . 2 |
30 | 26, 29 | eqssd 3164 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wex 1485 wcel 2141 wral 2448 cvv 2730 cin 3120 wss 3121 cpw 3566 cuni 3796 ciun 3873 cfv 5198 ctg 12594 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fv 5206 df-topgen 12600 |
This theorem is referenced by: tgss3 12872 txbasval 13061 |
Copyright terms: Public domain | W3C validator |