ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tgidm Unicode version

Theorem tgidm 12170
Description: The topology generator function is idempotent. (Contributed by NM, 18-Jul-2006.) (Revised by Mario Carneiro, 2-Sep-2015.)
Assertion
Ref Expression
tgidm  |-  ( B  e.  V  ->  ( topGen `
 ( topGen `  B
) )  =  (
topGen `  B ) )

Proof of Theorem tgidm
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tgvalex 12146 . . . . 5  |-  ( B  e.  V  ->  ( topGen `
 B )  e. 
_V )
2 eltg3 12153 . . . . 5  |-  ( (
topGen `  B )  e. 
_V  ->  ( x  e.  ( topGen `  ( topGen `  B ) )  <->  E. y
( y  C_  ( topGen `
 B )  /\  x  =  U. y
) ) )
31, 2syl 14 . . . 4  |-  ( B  e.  V  ->  (
x  e.  ( topGen `  ( topGen `  B )
)  <->  E. y ( y 
C_  ( topGen `  B
)  /\  x  =  U. y ) ) )
4 uniiun 3836 . . . . . . . . . 10  |-  U. y  =  U_ z  e.  y  z
5 simpr 109 . . . . . . . . . . . . 13  |-  ( ( B  e.  V  /\  y  C_  ( topGen `  B
) )  ->  y  C_  ( topGen `  B )
)
65sselda 3067 . . . . . . . . . . . 12  |-  ( ( ( B  e.  V  /\  y  C_  ( topGen `  B ) )  /\  z  e.  y )  ->  z  e.  ( topGen `  B ) )
7 eltg4i 12151 . . . . . . . . . . . 12  |-  ( z  e.  ( topGen `  B
)  ->  z  =  U. ( B  i^i  ~P z ) )
86, 7syl 14 . . . . . . . . . . 11  |-  ( ( ( B  e.  V  /\  y  C_  ( topGen `  B ) )  /\  z  e.  y )  ->  z  =  U. ( B  i^i  ~P z ) )
98iuneq2dv 3804 . . . . . . . . . 10  |-  ( ( B  e.  V  /\  y  C_  ( topGen `  B
) )  ->  U_ z  e.  y  z  =  U_ z  e.  y  U. ( B  i^i  ~P z
) )
104, 9syl5eq 2162 . . . . . . . . 9  |-  ( ( B  e.  V  /\  y  C_  ( topGen `  B
) )  ->  U. y  =  U_ z  e.  y 
U. ( B  i^i  ~P z ) )
11 iuncom4 3790 . . . . . . . . 9  |-  U_ z  e.  y  U. ( B  i^i  ~P z )  =  U. U_ z  e.  y  ( B  i^i  ~P z )
1210, 11syl6eq 2166 . . . . . . . 8  |-  ( ( B  e.  V  /\  y  C_  ( topGen `  B
) )  ->  U. y  =  U. U_ z  e.  y  ( B  i^i  ~P z ) )
13 inss1 3266 . . . . . . . . . . . 12  |-  ( B  i^i  ~P z ) 
C_  B
1413rgenw 2464 . . . . . . . . . . 11  |-  A. z  e.  y  ( B  i^i  ~P z )  C_  B
15 iunss 3824 . . . . . . . . . . 11  |-  ( U_ z  e.  y  ( B  i^i  ~P z ) 
C_  B  <->  A. z  e.  y  ( B  i^i  ~P z )  C_  B )
1614, 15mpbir 145 . . . . . . . . . 10  |-  U_ z  e.  y  ( B  i^i  ~P z )  C_  B
1716a1i 9 . . . . . . . . 9  |-  ( y 
C_  ( topGen `  B
)  ->  U_ z  e.  y  ( B  i^i  ~P z )  C_  B
)
18 eltg3i 12152 . . . . . . . . 9  |-  ( ( B  e.  V  /\  U_ z  e.  y  ( B  i^i  ~P z
)  C_  B )  ->  U. U_ z  e.  y  ( B  i^i  ~P z )  e.  (
topGen `  B ) )
1917, 18sylan2 284 . . . . . . . 8  |-  ( ( B  e.  V  /\  y  C_  ( topGen `  B
) )  ->  U. U_ z  e.  y  ( B  i^i  ~P z )  e.  ( topGen `  B
) )
2012, 19eqeltrd 2194 . . . . . . 7  |-  ( ( B  e.  V  /\  y  C_  ( topGen `  B
) )  ->  U. y  e.  ( topGen `  B )
)
21 eleq1 2180 . . . . . . 7  |-  ( x  =  U. y  -> 
( x  e.  (
topGen `  B )  <->  U. y  e.  ( topGen `  B )
) )
2220, 21syl5ibrcom 156 . . . . . 6  |-  ( ( B  e.  V  /\  y  C_  ( topGen `  B
) )  ->  (
x  =  U. y  ->  x  e.  ( topGen `  B ) ) )
2322expimpd 360 . . . . 5  |-  ( B  e.  V  ->  (
( y  C_  ( topGen `
 B )  /\  x  =  U. y
)  ->  x  e.  ( topGen `  B )
) )
2423exlimdv 1775 . . . 4  |-  ( B  e.  V  ->  ( E. y ( y  C_  ( topGen `  B )  /\  x  =  U. y )  ->  x  e.  ( topGen `  B )
) )
253, 24sylbid 149 . . 3  |-  ( B  e.  V  ->  (
x  e.  ( topGen `  ( topGen `  B )
)  ->  x  e.  ( topGen `  B )
) )
2625ssrdv 3073 . 2  |-  ( B  e.  V  ->  ( topGen `
 ( topGen `  B
) )  C_  ( topGen `
 B ) )
27 bastg 12157 . . 3  |-  ( B  e.  V  ->  B  C_  ( topGen `  B )
)
28 tgss 12159 . . 3  |-  ( ( ( topGen `  B )  e.  _V  /\  B  C_  ( topGen `  B )
)  ->  ( topGen `  B )  C_  ( topGen `
 ( topGen `  B
) ) )
291, 27, 28syl2anc 408 . 2  |-  ( B  e.  V  ->  ( topGen `
 B )  C_  ( topGen `  ( topGen `  B ) ) )
3026, 29eqssd 3084 1  |-  ( B  e.  V  ->  ( topGen `
 ( topGen `  B
) )  =  (
topGen `  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1316   E.wex 1453    e. wcel 1465   A.wral 2393   _Vcvv 2660    i^i cin 3040    C_ wss 3041   ~Pcpw 3480   U.cuni 3706   U_ciun 3783   ` cfv 5093   topGenctg 12062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-sep 4016  ax-pow 4068  ax-pr 4101  ax-un 4325
This theorem depends on definitions:  df-bi 116  df-3an 949  df-tru 1319  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ral 2398  df-rex 2399  df-v 2662  df-sbc 2883  df-un 3045  df-in 3047  df-ss 3054  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-iun 3785  df-br 3900  df-opab 3960  df-mpt 3961  df-id 4185  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-iota 5058  df-fun 5095  df-fv 5101  df-topgen 12068
This theorem is referenced by:  tgss3  12174  txbasval  12363
  Copyright terms: Public domain W3C validator