Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > tgidm | Unicode version |
Description: The topology generator function is idempotent. (Contributed by NM, 18-Jul-2006.) (Revised by Mario Carneiro, 2-Sep-2015.) |
Ref | Expression |
---|---|
tgidm |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgvalex 12700 | . . . . 5 | |
2 | eltg3 12707 | . . . . 5 | |
3 | 1, 2 | syl 14 | . . . 4 |
4 | uniiun 3919 | . . . . . . . . . 10 | |
5 | simpr 109 | . . . . . . . . . . . . 13 | |
6 | 5 | sselda 3142 | . . . . . . . . . . . 12 |
7 | eltg4i 12705 | . . . . . . . . . . . 12 | |
8 | 6, 7 | syl 14 | . . . . . . . . . . 11 |
9 | 8 | iuneq2dv 3887 | . . . . . . . . . 10 |
10 | 4, 9 | syl5eq 2211 | . . . . . . . . 9 |
11 | iuncom4 3873 | . . . . . . . . 9 | |
12 | 10, 11 | eqtrdi 2215 | . . . . . . . 8 |
13 | inss1 3342 | . . . . . . . . . . . 12 | |
14 | 13 | rgenw 2521 | . . . . . . . . . . 11 |
15 | iunss 3907 | . . . . . . . . . . 11 | |
16 | 14, 15 | mpbir 145 | . . . . . . . . . 10 |
17 | 16 | a1i 9 | . . . . . . . . 9 |
18 | eltg3i 12706 | . . . . . . . . 9 | |
19 | 17, 18 | sylan2 284 | . . . . . . . 8 |
20 | 12, 19 | eqeltrd 2243 | . . . . . . 7 |
21 | eleq1 2229 | . . . . . . 7 | |
22 | 20, 21 | syl5ibrcom 156 | . . . . . 6 |
23 | 22 | expimpd 361 | . . . . 5 |
24 | 23 | exlimdv 1807 | . . . 4 |
25 | 3, 24 | sylbid 149 | . . 3 |
26 | 25 | ssrdv 3148 | . 2 |
27 | bastg 12711 | . . 3 | |
28 | tgss 12713 | . . 3 | |
29 | 1, 27, 28 | syl2anc 409 | . 2 |
30 | 26, 29 | eqssd 3159 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wex 1480 wcel 2136 wral 2444 cvv 2726 cin 3115 wss 3116 cpw 3559 cuni 3789 ciun 3866 cfv 5188 ctg 12571 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-topgen 12577 |
This theorem is referenced by: tgss3 12728 txbasval 12917 |
Copyright terms: Public domain | W3C validator |