ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tgidm Unicode version

Theorem tgidm 14059
Description: The topology generator function is idempotent. (Contributed by NM, 18-Jul-2006.) (Revised by Mario Carneiro, 2-Sep-2015.)
Assertion
Ref Expression
tgidm  |-  ( B  e.  V  ->  ( topGen `
 ( topGen `  B
) )  =  (
topGen `  B ) )

Proof of Theorem tgidm
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tgvalex 12779 . . . . 5  |-  ( B  e.  V  ->  ( topGen `
 B )  e. 
_V )
2 eltg3 14042 . . . . 5  |-  ( (
topGen `  B )  e. 
_V  ->  ( x  e.  ( topGen `  ( topGen `  B ) )  <->  E. y
( y  C_  ( topGen `
 B )  /\  x  =  U. y
) ) )
31, 2syl 14 . . . 4  |-  ( B  e.  V  ->  (
x  e.  ( topGen `  ( topGen `  B )
)  <->  E. y ( y 
C_  ( topGen `  B
)  /\  x  =  U. y ) ) )
4 uniiun 3958 . . . . . . . . . 10  |-  U. y  =  U_ z  e.  y  z
5 simpr 110 . . . . . . . . . . . . 13  |-  ( ( B  e.  V  /\  y  C_  ( topGen `  B
) )  ->  y  C_  ( topGen `  B )
)
65sselda 3170 . . . . . . . . . . . 12  |-  ( ( ( B  e.  V  /\  y  C_  ( topGen `  B ) )  /\  z  e.  y )  ->  z  e.  ( topGen `  B ) )
7 eltg4i 14040 . . . . . . . . . . . 12  |-  ( z  e.  ( topGen `  B
)  ->  z  =  U. ( B  i^i  ~P z ) )
86, 7syl 14 . . . . . . . . . . 11  |-  ( ( ( B  e.  V  /\  y  C_  ( topGen `  B ) )  /\  z  e.  y )  ->  z  =  U. ( B  i^i  ~P z ) )
98iuneq2dv 3925 . . . . . . . . . 10  |-  ( ( B  e.  V  /\  y  C_  ( topGen `  B
) )  ->  U_ z  e.  y  z  =  U_ z  e.  y  U. ( B  i^i  ~P z
) )
104, 9eqtrid 2234 . . . . . . . . 9  |-  ( ( B  e.  V  /\  y  C_  ( topGen `  B
) )  ->  U. y  =  U_ z  e.  y 
U. ( B  i^i  ~P z ) )
11 iuncom4 3911 . . . . . . . . 9  |-  U_ z  e.  y  U. ( B  i^i  ~P z )  =  U. U_ z  e.  y  ( B  i^i  ~P z )
1210, 11eqtrdi 2238 . . . . . . . 8  |-  ( ( B  e.  V  /\  y  C_  ( topGen `  B
) )  ->  U. y  =  U. U_ z  e.  y  ( B  i^i  ~P z ) )
13 inss1 3370 . . . . . . . . . . . 12  |-  ( B  i^i  ~P z ) 
C_  B
1413rgenw 2545 . . . . . . . . . . 11  |-  A. z  e.  y  ( B  i^i  ~P z )  C_  B
15 iunss 3945 . . . . . . . . . . 11  |-  ( U_ z  e.  y  ( B  i^i  ~P z ) 
C_  B  <->  A. z  e.  y  ( B  i^i  ~P z )  C_  B )
1614, 15mpbir 146 . . . . . . . . . 10  |-  U_ z  e.  y  ( B  i^i  ~P z )  C_  B
1716a1i 9 . . . . . . . . 9  |-  ( y 
C_  ( topGen `  B
)  ->  U_ z  e.  y  ( B  i^i  ~P z )  C_  B
)
18 eltg3i 14041 . . . . . . . . 9  |-  ( ( B  e.  V  /\  U_ z  e.  y  ( B  i^i  ~P z
)  C_  B )  ->  U. U_ z  e.  y  ( B  i^i  ~P z )  e.  (
topGen `  B ) )
1917, 18sylan2 286 . . . . . . . 8  |-  ( ( B  e.  V  /\  y  C_  ( topGen `  B
) )  ->  U. U_ z  e.  y  ( B  i^i  ~P z )  e.  ( topGen `  B
) )
2012, 19eqeltrd 2266 . . . . . . 7  |-  ( ( B  e.  V  /\  y  C_  ( topGen `  B
) )  ->  U. y  e.  ( topGen `  B )
)
21 eleq1 2252 . . . . . . 7  |-  ( x  =  U. y  -> 
( x  e.  (
topGen `  B )  <->  U. y  e.  ( topGen `  B )
) )
2220, 21syl5ibrcom 157 . . . . . 6  |-  ( ( B  e.  V  /\  y  C_  ( topGen `  B
) )  ->  (
x  =  U. y  ->  x  e.  ( topGen `  B ) ) )
2322expimpd 363 . . . . 5  |-  ( B  e.  V  ->  (
( y  C_  ( topGen `
 B )  /\  x  =  U. y
)  ->  x  e.  ( topGen `  B )
) )
2423exlimdv 1830 . . . 4  |-  ( B  e.  V  ->  ( E. y ( y  C_  ( topGen `  B )  /\  x  =  U. y )  ->  x  e.  ( topGen `  B )
) )
253, 24sylbid 150 . . 3  |-  ( B  e.  V  ->  (
x  e.  ( topGen `  ( topGen `  B )
)  ->  x  e.  ( topGen `  B )
) )
2625ssrdv 3176 . 2  |-  ( B  e.  V  ->  ( topGen `
 ( topGen `  B
) )  C_  ( topGen `
 B ) )
27 bastg 14046 . . 3  |-  ( B  e.  V  ->  B  C_  ( topGen `  B )
)
28 tgss 14048 . . 3  |-  ( ( ( topGen `  B )  e.  _V  /\  B  C_  ( topGen `  B )
)  ->  ( topGen `  B )  C_  ( topGen `
 ( topGen `  B
) ) )
291, 27, 28syl2anc 411 . 2  |-  ( B  e.  V  ->  ( topGen `
 B )  C_  ( topGen `  ( topGen `  B ) ) )
3026, 29eqssd 3187 1  |-  ( B  e.  V  ->  ( topGen `
 ( topGen `  B
) )  =  (
topGen `  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364   E.wex 1503    e. wcel 2160   A.wral 2468   _Vcvv 2752    i^i cin 3143    C_ wss 3144   ~Pcpw 3593   U.cuni 3827   U_ciun 3904   ` cfv 5238   topGenctg 12770
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4139  ax-pow 4195  ax-pr 4230  ax-un 4454
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-v 2754  df-sbc 2978  df-un 3148  df-in 3150  df-ss 3157  df-pw 3595  df-sn 3616  df-pr 3617  df-op 3619  df-uni 3828  df-iun 3906  df-br 4022  df-opab 4083  df-mpt 4084  df-id 4314  df-xp 4653  df-rel 4654  df-cnv 4655  df-co 4656  df-dm 4657  df-iota 5199  df-fun 5240  df-fv 5246  df-topgen 12776
This theorem is referenced by:  tgss3  14063  txbasval  14252
  Copyright terms: Public domain W3C validator