| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tgidm | Unicode version | ||
| Description: The topology generator function is idempotent. (Contributed by NM, 18-Jul-2006.) (Revised by Mario Carneiro, 2-Sep-2015.) |
| Ref | Expression |
|---|---|
| tgidm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tgvalex 13296 |
. . . . 5
| |
| 2 | eltg3 14731 |
. . . . 5
| |
| 3 | 1, 2 | syl 14 |
. . . 4
|
| 4 | uniiun 4019 |
. . . . . . . . . 10
| |
| 5 | simpr 110 |
. . . . . . . . . . . . 13
| |
| 6 | 5 | sselda 3224 |
. . . . . . . . . . . 12
|
| 7 | eltg4i 14729 |
. . . . . . . . . . . 12
| |
| 8 | 6, 7 | syl 14 |
. . . . . . . . . . 11
|
| 9 | 8 | iuneq2dv 3986 |
. . . . . . . . . 10
|
| 10 | 4, 9 | eqtrid 2274 |
. . . . . . . . 9
|
| 11 | iuncom4 3972 |
. . . . . . . . 9
| |
| 12 | 10, 11 | eqtrdi 2278 |
. . . . . . . 8
|
| 13 | inss1 3424 |
. . . . . . . . . . . 12
| |
| 14 | 13 | rgenw 2585 |
. . . . . . . . . . 11
|
| 15 | iunss 4006 |
. . . . . . . . . . 11
| |
| 16 | 14, 15 | mpbir 146 |
. . . . . . . . . 10
|
| 17 | 16 | a1i 9 |
. . . . . . . . 9
|
| 18 | eltg3i 14730 |
. . . . . . . . 9
| |
| 19 | 17, 18 | sylan2 286 |
. . . . . . . 8
|
| 20 | 12, 19 | eqeltrd 2306 |
. . . . . . 7
|
| 21 | eleq1 2292 |
. . . . . . 7
| |
| 22 | 20, 21 | syl5ibrcom 157 |
. . . . . 6
|
| 23 | 22 | expimpd 363 |
. . . . 5
|
| 24 | 23 | exlimdv 1865 |
. . . 4
|
| 25 | 3, 24 | sylbid 150 |
. . 3
|
| 26 | 25 | ssrdv 3230 |
. 2
|
| 27 | bastg 14735 |
. . 3
| |
| 28 | tgss 14737 |
. . 3
| |
| 29 | 1, 27, 28 | syl2anc 411 |
. 2
|
| 30 | 26, 29 | eqssd 3241 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-iota 5278 df-fun 5320 df-fv 5326 df-topgen 13293 |
| This theorem is referenced by: tgss3 14752 txbasval 14941 |
| Copyright terms: Public domain | W3C validator |