ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tgidm Unicode version

Theorem tgidm 12724
Description: The topology generator function is idempotent. (Contributed by NM, 18-Jul-2006.) (Revised by Mario Carneiro, 2-Sep-2015.)
Assertion
Ref Expression
tgidm  |-  ( B  e.  V  ->  ( topGen `
 ( topGen `  B
) )  =  (
topGen `  B ) )

Proof of Theorem tgidm
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tgvalex 12700 . . . . 5  |-  ( B  e.  V  ->  ( topGen `
 B )  e. 
_V )
2 eltg3 12707 . . . . 5  |-  ( (
topGen `  B )  e. 
_V  ->  ( x  e.  ( topGen `  ( topGen `  B ) )  <->  E. y
( y  C_  ( topGen `
 B )  /\  x  =  U. y
) ) )
31, 2syl 14 . . . 4  |-  ( B  e.  V  ->  (
x  e.  ( topGen `  ( topGen `  B )
)  <->  E. y ( y 
C_  ( topGen `  B
)  /\  x  =  U. y ) ) )
4 uniiun 3919 . . . . . . . . . 10  |-  U. y  =  U_ z  e.  y  z
5 simpr 109 . . . . . . . . . . . . 13  |-  ( ( B  e.  V  /\  y  C_  ( topGen `  B
) )  ->  y  C_  ( topGen `  B )
)
65sselda 3142 . . . . . . . . . . . 12  |-  ( ( ( B  e.  V  /\  y  C_  ( topGen `  B ) )  /\  z  e.  y )  ->  z  e.  ( topGen `  B ) )
7 eltg4i 12705 . . . . . . . . . . . 12  |-  ( z  e.  ( topGen `  B
)  ->  z  =  U. ( B  i^i  ~P z ) )
86, 7syl 14 . . . . . . . . . . 11  |-  ( ( ( B  e.  V  /\  y  C_  ( topGen `  B ) )  /\  z  e.  y )  ->  z  =  U. ( B  i^i  ~P z ) )
98iuneq2dv 3887 . . . . . . . . . 10  |-  ( ( B  e.  V  /\  y  C_  ( topGen `  B
) )  ->  U_ z  e.  y  z  =  U_ z  e.  y  U. ( B  i^i  ~P z
) )
104, 9syl5eq 2211 . . . . . . . . 9  |-  ( ( B  e.  V  /\  y  C_  ( topGen `  B
) )  ->  U. y  =  U_ z  e.  y 
U. ( B  i^i  ~P z ) )
11 iuncom4 3873 . . . . . . . . 9  |-  U_ z  e.  y  U. ( B  i^i  ~P z )  =  U. U_ z  e.  y  ( B  i^i  ~P z )
1210, 11eqtrdi 2215 . . . . . . . 8  |-  ( ( B  e.  V  /\  y  C_  ( topGen `  B
) )  ->  U. y  =  U. U_ z  e.  y  ( B  i^i  ~P z ) )
13 inss1 3342 . . . . . . . . . . . 12  |-  ( B  i^i  ~P z ) 
C_  B
1413rgenw 2521 . . . . . . . . . . 11  |-  A. z  e.  y  ( B  i^i  ~P z )  C_  B
15 iunss 3907 . . . . . . . . . . 11  |-  ( U_ z  e.  y  ( B  i^i  ~P z ) 
C_  B  <->  A. z  e.  y  ( B  i^i  ~P z )  C_  B )
1614, 15mpbir 145 . . . . . . . . . 10  |-  U_ z  e.  y  ( B  i^i  ~P z )  C_  B
1716a1i 9 . . . . . . . . 9  |-  ( y 
C_  ( topGen `  B
)  ->  U_ z  e.  y  ( B  i^i  ~P z )  C_  B
)
18 eltg3i 12706 . . . . . . . . 9  |-  ( ( B  e.  V  /\  U_ z  e.  y  ( B  i^i  ~P z
)  C_  B )  ->  U. U_ z  e.  y  ( B  i^i  ~P z )  e.  (
topGen `  B ) )
1917, 18sylan2 284 . . . . . . . 8  |-  ( ( B  e.  V  /\  y  C_  ( topGen `  B
) )  ->  U. U_ z  e.  y  ( B  i^i  ~P z )  e.  ( topGen `  B
) )
2012, 19eqeltrd 2243 . . . . . . 7  |-  ( ( B  e.  V  /\  y  C_  ( topGen `  B
) )  ->  U. y  e.  ( topGen `  B )
)
21 eleq1 2229 . . . . . . 7  |-  ( x  =  U. y  -> 
( x  e.  (
topGen `  B )  <->  U. y  e.  ( topGen `  B )
) )
2220, 21syl5ibrcom 156 . . . . . 6  |-  ( ( B  e.  V  /\  y  C_  ( topGen `  B
) )  ->  (
x  =  U. y  ->  x  e.  ( topGen `  B ) ) )
2322expimpd 361 . . . . 5  |-  ( B  e.  V  ->  (
( y  C_  ( topGen `
 B )  /\  x  =  U. y
)  ->  x  e.  ( topGen `  B )
) )
2423exlimdv 1807 . . . 4  |-  ( B  e.  V  ->  ( E. y ( y  C_  ( topGen `  B )  /\  x  =  U. y )  ->  x  e.  ( topGen `  B )
) )
253, 24sylbid 149 . . 3  |-  ( B  e.  V  ->  (
x  e.  ( topGen `  ( topGen `  B )
)  ->  x  e.  ( topGen `  B )
) )
2625ssrdv 3148 . 2  |-  ( B  e.  V  ->  ( topGen `
 ( topGen `  B
) )  C_  ( topGen `
 B ) )
27 bastg 12711 . . 3  |-  ( B  e.  V  ->  B  C_  ( topGen `  B )
)
28 tgss 12713 . . 3  |-  ( ( ( topGen `  B )  e.  _V  /\  B  C_  ( topGen `  B )
)  ->  ( topGen `  B )  C_  ( topGen `
 ( topGen `  B
) ) )
291, 27, 28syl2anc 409 . 2  |-  ( B  e.  V  ->  ( topGen `
 B )  C_  ( topGen `  ( topGen `  B ) ) )
3026, 29eqssd 3159 1  |-  ( B  e.  V  ->  ( topGen `
 ( topGen `  B
) )  =  (
topGen `  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343   E.wex 1480    e. wcel 2136   A.wral 2444   _Vcvv 2726    i^i cin 3115    C_ wss 3116   ~Pcpw 3559   U.cuni 3789   U_ciun 3866   ` cfv 5188   topGenctg 12571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196  df-topgen 12577
This theorem is referenced by:  tgss3  12728  txbasval  12917
  Copyright terms: Public domain W3C validator