ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iunxdif2 Unicode version

Theorem iunxdif2 3921
Description: Indexed union with a class difference as its index. (Contributed by NM, 10-Dec-2004.)
Hypothesis
Ref Expression
iunxdif2.1  |-  ( x  =  y  ->  C  =  D )
Assertion
Ref Expression
iunxdif2  |-  ( A. x  e.  A  E. y  e.  ( A  \  B ) C  C_  D  ->  U_ y  e.  ( A  \  B ) D  =  U_ x  e.  A  C )
Distinct variable groups:    x, y, A   
x, B, y    y, C    x, D
Allowed substitution hints:    C( x)    D( y)

Proof of Theorem iunxdif2
StepHypRef Expression
1 iunss2 3918 . . 3  |-  ( A. x  e.  A  E. y  e.  ( A  \  B ) C  C_  D  ->  U_ x  e.  A  C  C_  U_ y  e.  ( A  \  B
) D )
2 difss 3253 . . . . 5  |-  ( A 
\  B )  C_  A
3 iunss1 3884 . . . . 5  |-  ( ( A  \  B ) 
C_  A  ->  U_ y  e.  ( A  \  B
) D  C_  U_ y  e.  A  D )
42, 3ax-mp 5 . . . 4  |-  U_ y  e.  ( A  \  B
) D  C_  U_ y  e.  A  D
5 iunxdif2.1 . . . . 5  |-  ( x  =  y  ->  C  =  D )
65cbviunv 3912 . . . 4  |-  U_ x  e.  A  C  =  U_ y  e.  A  D
74, 6sseqtrri 3182 . . 3  |-  U_ y  e.  ( A  \  B
) D  C_  U_ x  e.  A  C
81, 7jctil 310 . 2  |-  ( A. x  e.  A  E. y  e.  ( A  \  B ) C  C_  D  ->  ( U_ y  e.  ( A  \  B
) D  C_  U_ x  e.  A  C  /\  U_ x  e.  A  C  C_ 
U_ y  e.  ( A  \  B ) D ) )
9 eqss 3162 . 2  |-  ( U_ y  e.  ( A  \  B ) D  = 
U_ x  e.  A  C 
<->  ( U_ y  e.  ( A  \  B
) D  C_  U_ x  e.  A  C  /\  U_ x  e.  A  C  C_ 
U_ y  e.  ( A  \  B ) D ) )
108, 9sylibr 133 1  |-  ( A. x  e.  A  E. y  e.  ( A  \  B ) C  C_  D  ->  U_ y  e.  ( A  \  B ) D  =  U_ x  e.  A  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348   A.wral 2448   E.wrex 2449    \ cdif 3118    C_ wss 3121   U_ciun 3873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-dif 3123  df-in 3127  df-ss 3134  df-iun 3875
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator