ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iunxdif2 Unicode version

Theorem iunxdif2 3961
Description: Indexed union with a class difference as its index. (Contributed by NM, 10-Dec-2004.)
Hypothesis
Ref Expression
iunxdif2.1  |-  ( x  =  y  ->  C  =  D )
Assertion
Ref Expression
iunxdif2  |-  ( A. x  e.  A  E. y  e.  ( A  \  B ) C  C_  D  ->  U_ y  e.  ( A  \  B ) D  =  U_ x  e.  A  C )
Distinct variable groups:    x, y, A   
x, B, y    y, C    x, D
Allowed substitution hints:    C( x)    D( y)

Proof of Theorem iunxdif2
StepHypRef Expression
1 iunss2 3957 . . 3  |-  ( A. x  e.  A  E. y  e.  ( A  \  B ) C  C_  D  ->  U_ x  e.  A  C  C_  U_ y  e.  ( A  \  B
) D )
2 difss 3285 . . . . 5  |-  ( A 
\  B )  C_  A
3 iunss1 3923 . . . . 5  |-  ( ( A  \  B ) 
C_  A  ->  U_ y  e.  ( A  \  B
) D  C_  U_ y  e.  A  D )
42, 3ax-mp 5 . . . 4  |-  U_ y  e.  ( A  \  B
) D  C_  U_ y  e.  A  D
5 iunxdif2.1 . . . . 5  |-  ( x  =  y  ->  C  =  D )
65cbviunv 3951 . . . 4  |-  U_ x  e.  A  C  =  U_ y  e.  A  D
74, 6sseqtrri 3214 . . 3  |-  U_ y  e.  ( A  \  B
) D  C_  U_ x  e.  A  C
81, 7jctil 312 . 2  |-  ( A. x  e.  A  E. y  e.  ( A  \  B ) C  C_  D  ->  ( U_ y  e.  ( A  \  B
) D  C_  U_ x  e.  A  C  /\  U_ x  e.  A  C  C_ 
U_ y  e.  ( A  \  B ) D ) )
9 eqss 3194 . 2  |-  ( U_ y  e.  ( A  \  B ) D  = 
U_ x  e.  A  C 
<->  ( U_ y  e.  ( A  \  B
) D  C_  U_ x  e.  A  C  /\  U_ x  e.  A  C  C_ 
U_ y  e.  ( A  \  B ) D ) )
108, 9sylibr 134 1  |-  ( A. x  e.  A  E. y  e.  ( A  \  B ) C  C_  D  ->  U_ y  e.  ( A  \  B ) D  =  U_ x  e.  A  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364   A.wral 2472   E.wrex 2473    \ cdif 3150    C_ wss 3153   U_ciun 3912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-dif 3155  df-in 3159  df-ss 3166  df-iun 3914
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator