ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rdgss Unicode version

Theorem rdgss 6280
Description: Subset and recursive definition generator. (Contributed by Jim Kingdon, 15-Jul-2019.)
Hypotheses
Ref Expression
rdgss.1  |-  ( ph  ->  F  Fn  _V )
rdgss.2  |-  ( ph  ->  I  e.  V )
rdgss.3  |-  ( ph  ->  A  e.  On )
rdgss.4  |-  ( ph  ->  B  e.  On )
rdgss.5  |-  ( ph  ->  A  C_  B )
Assertion
Ref Expression
rdgss  |-  ( ph  ->  ( rec ( F ,  I ) `  A )  C_  ( rec ( F ,  I
) `  B )
)

Proof of Theorem rdgss
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rdgss.5 . . . 4  |-  ( ph  ->  A  C_  B )
2 ssel 3091 . . . . . 6  |-  ( A 
C_  B  ->  (
x  e.  A  ->  x  e.  B )
)
3 ssid 3117 . . . . . . 7  |-  ( F `
 ( rec ( F ,  I ) `  x ) )  C_  ( F `  ( rec ( F ,  I
) `  x )
)
4 fveq2 5421 . . . . . . . . . 10  |-  ( y  =  x  ->  ( rec ( F ,  I
) `  y )  =  ( rec ( F ,  I ) `  x ) )
54fveq2d 5425 . . . . . . . . 9  |-  ( y  =  x  ->  ( F `  ( rec ( F ,  I ) `
 y ) )  =  ( F `  ( rec ( F ,  I ) `  x
) ) )
65sseq2d 3127 . . . . . . . 8  |-  ( y  =  x  ->  (
( F `  ( rec ( F ,  I
) `  x )
)  C_  ( F `  ( rec ( F ,  I ) `  y ) )  <->  ( F `  ( rec ( F ,  I ) `  x ) )  C_  ( F `  ( rec ( F ,  I
) `  x )
) ) )
76rspcev 2789 . . . . . . 7  |-  ( ( x  e.  B  /\  ( F `  ( rec ( F ,  I
) `  x )
)  C_  ( F `  ( rec ( F ,  I ) `  x ) ) )  ->  E. y  e.  B  ( F `  ( rec ( F ,  I
) `  x )
)  C_  ( F `  ( rec ( F ,  I ) `  y ) ) )
83, 7mpan2 421 . . . . . 6  |-  ( x  e.  B  ->  E. y  e.  B  ( F `  ( rec ( F ,  I ) `  x ) )  C_  ( F `  ( rec ( F ,  I
) `  y )
) )
92, 8syl6 33 . . . . 5  |-  ( A 
C_  B  ->  (
x  e.  A  ->  E. y  e.  B  ( F `  ( rec ( F ,  I
) `  x )
)  C_  ( F `  ( rec ( F ,  I ) `  y ) ) ) )
109ralrimiv 2504 . . . 4  |-  ( A 
C_  B  ->  A. x  e.  A  E. y  e.  B  ( F `  ( rec ( F ,  I ) `  x ) )  C_  ( F `  ( rec ( F ,  I
) `  y )
) )
111, 10syl 14 . . 3  |-  ( ph  ->  A. x  e.  A  E. y  e.  B  ( F `  ( rec ( F ,  I
) `  x )
)  C_  ( F `  ( rec ( F ,  I ) `  y ) ) )
12 iunss2 3858 . . 3  |-  ( A. x  e.  A  E. y  e.  B  ( F `  ( rec ( F ,  I ) `
 x ) ) 
C_  ( F `  ( rec ( F ,  I ) `  y
) )  ->  U_ x  e.  A  ( F `  ( rec ( F ,  I ) `  x ) )  C_  U_ y  e.  B  ( F `  ( rec ( F ,  I
) `  y )
) )
13 unss2 3247 . . 3  |-  ( U_ x  e.  A  ( F `  ( rec ( F ,  I ) `
 x ) ) 
C_  U_ y  e.  B  ( F `  ( rec ( F ,  I
) `  y )
)  ->  ( I  u.  U_ x  e.  A  ( F `  ( rec ( F ,  I
) `  x )
) )  C_  (
I  u.  U_ y  e.  B  ( F `  ( rec ( F ,  I ) `  y ) ) ) )
1411, 12, 133syl 17 . 2  |-  ( ph  ->  ( I  u.  U_ x  e.  A  ( F `  ( rec ( F ,  I ) `
 x ) ) )  C_  ( I  u.  U_ y  e.  B  ( F `  ( rec ( F ,  I
) `  y )
) ) )
15 rdgss.1 . . 3  |-  ( ph  ->  F  Fn  _V )
16 rdgss.2 . . 3  |-  ( ph  ->  I  e.  V )
17 rdgss.3 . . 3  |-  ( ph  ->  A  e.  On )
18 rdgival 6279 . . 3  |-  ( ( F  Fn  _V  /\  I  e.  V  /\  A  e.  On )  ->  ( rec ( F ,  I ) `  A )  =  ( I  u.  U_ x  e.  A  ( F `  ( rec ( F ,  I ) `  x ) ) ) )
1915, 16, 17, 18syl3anc 1216 . 2  |-  ( ph  ->  ( rec ( F ,  I ) `  A )  =  ( I  u.  U_ x  e.  A  ( F `  ( rec ( F ,  I ) `  x ) ) ) )
20 rdgss.4 . . 3  |-  ( ph  ->  B  e.  On )
21 rdgival 6279 . . 3  |-  ( ( F  Fn  _V  /\  I  e.  V  /\  B  e.  On )  ->  ( rec ( F ,  I ) `  B )  =  ( I  u.  U_ y  e.  B  ( F `  ( rec ( F ,  I ) `  y ) ) ) )
2215, 16, 20, 21syl3anc 1216 . 2  |-  ( ph  ->  ( rec ( F ,  I ) `  B )  =  ( I  u.  U_ y  e.  B  ( F `  ( rec ( F ,  I ) `  y ) ) ) )
2314, 19, 223sstr4d 3142 1  |-  ( ph  ->  ( rec ( F ,  I ) `  A )  C_  ( rec ( F ,  I
) `  B )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1331    e. wcel 1480   A.wral 2416   E.wrex 2417   _Vcvv 2686    u. cun 3069    C_ wss 3071   U_ciun 3813   Oncon0 4285    Fn wfn 5118   ` cfv 5123   reccrdg 6266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-suc 4293  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-recs 6202  df-irdg 6267
This theorem is referenced by:  oawordi  6365
  Copyright terms: Public domain W3C validator