ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rdgss Unicode version

Theorem rdgss 6351
Description: Subset and recursive definition generator. (Contributed by Jim Kingdon, 15-Jul-2019.)
Hypotheses
Ref Expression
rdgss.1  |-  ( ph  ->  F  Fn  _V )
rdgss.2  |-  ( ph  ->  I  e.  V )
rdgss.3  |-  ( ph  ->  A  e.  On )
rdgss.4  |-  ( ph  ->  B  e.  On )
rdgss.5  |-  ( ph  ->  A  C_  B )
Assertion
Ref Expression
rdgss  |-  ( ph  ->  ( rec ( F ,  I ) `  A )  C_  ( rec ( F ,  I
) `  B )
)

Proof of Theorem rdgss
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rdgss.5 . . . 4  |-  ( ph  ->  A  C_  B )
2 ssel 3136 . . . . . 6  |-  ( A 
C_  B  ->  (
x  e.  A  ->  x  e.  B )
)
3 ssid 3162 . . . . . . 7  |-  ( F `
 ( rec ( F ,  I ) `  x ) )  C_  ( F `  ( rec ( F ,  I
) `  x )
)
4 fveq2 5486 . . . . . . . . . 10  |-  ( y  =  x  ->  ( rec ( F ,  I
) `  y )  =  ( rec ( F ,  I ) `  x ) )
54fveq2d 5490 . . . . . . . . 9  |-  ( y  =  x  ->  ( F `  ( rec ( F ,  I ) `
 y ) )  =  ( F `  ( rec ( F ,  I ) `  x
) ) )
65sseq2d 3172 . . . . . . . 8  |-  ( y  =  x  ->  (
( F `  ( rec ( F ,  I
) `  x )
)  C_  ( F `  ( rec ( F ,  I ) `  y ) )  <->  ( F `  ( rec ( F ,  I ) `  x ) )  C_  ( F `  ( rec ( F ,  I
) `  x )
) ) )
76rspcev 2830 . . . . . . 7  |-  ( ( x  e.  B  /\  ( F `  ( rec ( F ,  I
) `  x )
)  C_  ( F `  ( rec ( F ,  I ) `  x ) ) )  ->  E. y  e.  B  ( F `  ( rec ( F ,  I
) `  x )
)  C_  ( F `  ( rec ( F ,  I ) `  y ) ) )
83, 7mpan2 422 . . . . . 6  |-  ( x  e.  B  ->  E. y  e.  B  ( F `  ( rec ( F ,  I ) `  x ) )  C_  ( F `  ( rec ( F ,  I
) `  y )
) )
92, 8syl6 33 . . . . 5  |-  ( A 
C_  B  ->  (
x  e.  A  ->  E. y  e.  B  ( F `  ( rec ( F ,  I
) `  x )
)  C_  ( F `  ( rec ( F ,  I ) `  y ) ) ) )
109ralrimiv 2538 . . . 4  |-  ( A 
C_  B  ->  A. x  e.  A  E. y  e.  B  ( F `  ( rec ( F ,  I ) `  x ) )  C_  ( F `  ( rec ( F ,  I
) `  y )
) )
111, 10syl 14 . . 3  |-  ( ph  ->  A. x  e.  A  E. y  e.  B  ( F `  ( rec ( F ,  I
) `  x )
)  C_  ( F `  ( rec ( F ,  I ) `  y ) ) )
12 iunss2 3911 . . 3  |-  ( A. x  e.  A  E. y  e.  B  ( F `  ( rec ( F ,  I ) `
 x ) ) 
C_  ( F `  ( rec ( F ,  I ) `  y
) )  ->  U_ x  e.  A  ( F `  ( rec ( F ,  I ) `  x ) )  C_  U_ y  e.  B  ( F `  ( rec ( F ,  I
) `  y )
) )
13 unss2 3293 . . 3  |-  ( U_ x  e.  A  ( F `  ( rec ( F ,  I ) `
 x ) ) 
C_  U_ y  e.  B  ( F `  ( rec ( F ,  I
) `  y )
)  ->  ( I  u.  U_ x  e.  A  ( F `  ( rec ( F ,  I
) `  x )
) )  C_  (
I  u.  U_ y  e.  B  ( F `  ( rec ( F ,  I ) `  y ) ) ) )
1411, 12, 133syl 17 . 2  |-  ( ph  ->  ( I  u.  U_ x  e.  A  ( F `  ( rec ( F ,  I ) `
 x ) ) )  C_  ( I  u.  U_ y  e.  B  ( F `  ( rec ( F ,  I
) `  y )
) ) )
15 rdgss.1 . . 3  |-  ( ph  ->  F  Fn  _V )
16 rdgss.2 . . 3  |-  ( ph  ->  I  e.  V )
17 rdgss.3 . . 3  |-  ( ph  ->  A  e.  On )
18 rdgival 6350 . . 3  |-  ( ( F  Fn  _V  /\  I  e.  V  /\  A  e.  On )  ->  ( rec ( F ,  I ) `  A )  =  ( I  u.  U_ x  e.  A  ( F `  ( rec ( F ,  I ) `  x ) ) ) )
1915, 16, 17, 18syl3anc 1228 . 2  |-  ( ph  ->  ( rec ( F ,  I ) `  A )  =  ( I  u.  U_ x  e.  A  ( F `  ( rec ( F ,  I ) `  x ) ) ) )
20 rdgss.4 . . 3  |-  ( ph  ->  B  e.  On )
21 rdgival 6350 . . 3  |-  ( ( F  Fn  _V  /\  I  e.  V  /\  B  e.  On )  ->  ( rec ( F ,  I ) `  B )  =  ( I  u.  U_ y  e.  B  ( F `  ( rec ( F ,  I ) `  y ) ) ) )
2215, 16, 20, 21syl3anc 1228 . 2  |-  ( ph  ->  ( rec ( F ,  I ) `  B )  =  ( I  u.  U_ y  e.  B  ( F `  ( rec ( F ,  I ) `  y ) ) ) )
2314, 19, 223sstr4d 3187 1  |-  ( ph  ->  ( rec ( F ,  I ) `  A )  C_  ( rec ( F ,  I
) `  B )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343    e. wcel 2136   A.wral 2444   E.wrex 2445   _Vcvv 2726    u. cun 3114    C_ wss 3116   U_ciun 3866   Oncon0 4341    Fn wfn 5183   ` cfv 5188   reccrdg 6337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-suc 4349  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-recs 6273  df-irdg 6338
This theorem is referenced by:  oawordi  6437
  Copyright terms: Public domain W3C validator