Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rdgss | Unicode version |
Description: Subset and recursive definition generator. (Contributed by Jim Kingdon, 15-Jul-2019.) |
Ref | Expression |
---|---|
rdgss.1 | |
rdgss.2 | |
rdgss.3 | |
rdgss.4 | |
rdgss.5 |
Ref | Expression |
---|---|
rdgss |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rdgss.5 | . . . 4 | |
2 | ssel 3141 | . . . . . 6 | |
3 | ssid 3167 | . . . . . . 7 | |
4 | fveq2 5496 | . . . . . . . . . 10 | |
5 | 4 | fveq2d 5500 | . . . . . . . . 9 |
6 | 5 | sseq2d 3177 | . . . . . . . 8 |
7 | 6 | rspcev 2834 | . . . . . . 7 |
8 | 3, 7 | mpan2 423 | . . . . . 6 |
9 | 2, 8 | syl6 33 | . . . . 5 |
10 | 9 | ralrimiv 2542 | . . . 4 |
11 | 1, 10 | syl 14 | . . 3 |
12 | iunss2 3918 | . . 3 | |
13 | unss2 3298 | . . 3 | |
14 | 11, 12, 13 | 3syl 17 | . 2 |
15 | rdgss.1 | . . 3 | |
16 | rdgss.2 | . . 3 | |
17 | rdgss.3 | . . 3 | |
18 | rdgival 6361 | . . 3 | |
19 | 15, 16, 17, 18 | syl3anc 1233 | . 2 |
20 | rdgss.4 | . . 3 | |
21 | rdgival 6361 | . . 3 | |
22 | 15, 16, 20, 21 | syl3anc 1233 | . 2 |
23 | 14, 19, 22 | 3sstr4d 3192 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1348 wcel 2141 wral 2448 wrex 2449 cvv 2730 cun 3119 wss 3121 ciun 3873 con0 4348 wfn 5193 cfv 5198 crdg 6348 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-iord 4351 df-on 4353 df-suc 4356 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-recs 6284 df-irdg 6349 |
This theorem is referenced by: oawordi 6448 |
Copyright terms: Public domain | W3C validator |