| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ixpeq1 | GIF version | ||
| Description: Equality theorem for infinite Cartesian product. (Contributed by NM, 29-Sep-2006.) |
| Ref | Expression |
|---|---|
| ixpeq1 | ⊢ (𝐴 = 𝐵 → X𝑥 ∈ 𝐴 𝐶 = X𝑥 ∈ 𝐵 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fneq2 5409 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝑓 Fn 𝐴 ↔ 𝑓 Fn 𝐵)) | |
| 2 | raleq 2728 | . . . 4 ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐶 ↔ ∀𝑥 ∈ 𝐵 (𝑓‘𝑥) ∈ 𝐶)) | |
| 3 | 1, 2 | anbi12d 473 | . . 3 ⊢ (𝐴 = 𝐵 → ((𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐶) ↔ (𝑓 Fn 𝐵 ∧ ∀𝑥 ∈ 𝐵 (𝑓‘𝑥) ∈ 𝐶))) |
| 4 | 3 | abbidv 2347 | . 2 ⊢ (𝐴 = 𝐵 → {𝑓 ∣ (𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐶)} = {𝑓 ∣ (𝑓 Fn 𝐵 ∧ ∀𝑥 ∈ 𝐵 (𝑓‘𝑥) ∈ 𝐶)}) |
| 5 | dfixp 6845 | . 2 ⊢ X𝑥 ∈ 𝐴 𝐶 = {𝑓 ∣ (𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐶)} | |
| 6 | dfixp 6845 | . 2 ⊢ X𝑥 ∈ 𝐵 𝐶 = {𝑓 ∣ (𝑓 Fn 𝐵 ∧ ∀𝑥 ∈ 𝐵 (𝑓‘𝑥) ∈ 𝐶)} | |
| 7 | 4, 5, 6 | 3eqtr4g 2287 | 1 ⊢ (𝐴 = 𝐵 → X𝑥 ∈ 𝐴 𝐶 = X𝑥 ∈ 𝐵 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 {cab 2215 ∀wral 2508 Fn wfn 5312 ‘cfv 5317 Xcixp 6843 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-fn 5320 df-ixp 6844 |
| This theorem is referenced by: ixpeq1d 6855 |
| Copyright terms: Public domain | W3C validator |