![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ixpeq1 | GIF version |
Description: Equality theorem for infinite Cartesian product. (Contributed by NM, 29-Sep-2006.) |
Ref | Expression |
---|---|
ixpeq1 | ⊢ (𝐴 = 𝐵 → X𝑥 ∈ 𝐴 𝐶 = X𝑥 ∈ 𝐵 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fneq2 5320 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝑓 Fn 𝐴 ↔ 𝑓 Fn 𝐵)) | |
2 | raleq 2686 | . . . 4 ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐶 ↔ ∀𝑥 ∈ 𝐵 (𝑓‘𝑥) ∈ 𝐶)) | |
3 | 1, 2 | anbi12d 473 | . . 3 ⊢ (𝐴 = 𝐵 → ((𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐶) ↔ (𝑓 Fn 𝐵 ∧ ∀𝑥 ∈ 𝐵 (𝑓‘𝑥) ∈ 𝐶))) |
4 | 3 | abbidv 2307 | . 2 ⊢ (𝐴 = 𝐵 → {𝑓 ∣ (𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐶)} = {𝑓 ∣ (𝑓 Fn 𝐵 ∧ ∀𝑥 ∈ 𝐵 (𝑓‘𝑥) ∈ 𝐶)}) |
5 | dfixp 6718 | . 2 ⊢ X𝑥 ∈ 𝐴 𝐶 = {𝑓 ∣ (𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐶)} | |
6 | dfixp 6718 | . 2 ⊢ X𝑥 ∈ 𝐵 𝐶 = {𝑓 ∣ (𝑓 Fn 𝐵 ∧ ∀𝑥 ∈ 𝐵 (𝑓‘𝑥) ∈ 𝐶)} | |
7 | 4, 5, 6 | 3eqtr4g 2247 | 1 ⊢ (𝐴 = 𝐵 → X𝑥 ∈ 𝐴 𝐶 = X𝑥 ∈ 𝐵 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2160 {cab 2175 ∀wral 2468 Fn wfn 5226 ‘cfv 5231 Xcixp 6716 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ral 2473 df-fn 5234 df-ixp 6717 |
This theorem is referenced by: ixpeq1d 6728 |
Copyright terms: Public domain | W3C validator |