ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ixpeq1 GIF version

Theorem ixpeq1 6711
Description: Equality theorem for infinite Cartesian product. (Contributed by NM, 29-Sep-2006.)
Assertion
Ref Expression
ixpeq1 (𝐴 = 𝐵X𝑥𝐴 𝐶 = X𝑥𝐵 𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem ixpeq1
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 fneq2 5307 . . . 4 (𝐴 = 𝐵 → (𝑓 Fn 𝐴𝑓 Fn 𝐵))
2 raleq 2673 . . . 4 (𝐴 = 𝐵 → (∀𝑥𝐴 (𝑓𝑥) ∈ 𝐶 ↔ ∀𝑥𝐵 (𝑓𝑥) ∈ 𝐶))
31, 2anbi12d 473 . . 3 (𝐴 = 𝐵 → ((𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐶) ↔ (𝑓 Fn 𝐵 ∧ ∀𝑥𝐵 (𝑓𝑥) ∈ 𝐶)))
43abbidv 2295 . 2 (𝐴 = 𝐵 → {𝑓 ∣ (𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐶)} = {𝑓 ∣ (𝑓 Fn 𝐵 ∧ ∀𝑥𝐵 (𝑓𝑥) ∈ 𝐶)})
5 dfixp 6702 . 2 X𝑥𝐴 𝐶 = {𝑓 ∣ (𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐶)}
6 dfixp 6702 . 2 X𝑥𝐵 𝐶 = {𝑓 ∣ (𝑓 Fn 𝐵 ∧ ∀𝑥𝐵 (𝑓𝑥) ∈ 𝐶)}
74, 5, 63eqtr4g 2235 1 (𝐴 = 𝐵X𝑥𝐴 𝐶 = X𝑥𝐵 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2148  {cab 2163  wral 2455   Fn wfn 5213  cfv 5218  Xcixp 6700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-fn 5221  df-ixp 6701
This theorem is referenced by:  ixpeq1d  6712
  Copyright terms: Public domain W3C validator