ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frecuzrdgtcl Unicode version

Theorem frecuzrdgtcl 10414
Description: The recursive definition generator on upper integers is a function. See comment in frec2uz0d 10401 for the description of  G as the mapping from  om to  ( ZZ>= `  C
). (Contributed by Jim Kingdon, 26-May-2020.)
Hypotheses
Ref Expression
frec2uz.1  |-  ( ph  ->  C  e.  ZZ )
frec2uz.2  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C )
frecuzrdgrrn.a  |-  ( ph  ->  A  e.  S )
frecuzrdgrrn.f  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S
) )  ->  (
x F y )  e.  S )
frecuzrdgrrn.2  |-  R  = frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  S  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. )
frecuzrdgtcl.3  |-  ( ph  ->  T  =  ran  R
)
Assertion
Ref Expression
frecuzrdgtcl  |-  ( ph  ->  T : ( ZZ>= `  C ) --> S )
Distinct variable groups:    y, A    x, C, y    y, G    x, F, y    x, S, y    ph, x, y
Allowed substitution hints:    A( x)    R( x, y)    T( x, y)    G( x)

Proof of Theorem frecuzrdgtcl
Dummy variables  w  z  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frecuzrdgtcl.3 . . . . . . . . . 10  |-  ( ph  ->  T  =  ran  R
)
21eleq2d 2247 . . . . . . . . 9  |-  ( ph  ->  ( z  e.  T  <->  z  e.  ran  R ) )
3 frec2uz.1 . . . . . . . . . . 11  |-  ( ph  ->  C  e.  ZZ )
4 frec2uz.2 . . . . . . . . . . 11  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C )
5 frecuzrdgrrn.a . . . . . . . . . . 11  |-  ( ph  ->  A  e.  S )
6 frecuzrdgrrn.f . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S
) )  ->  (
x F y )  e.  S )
7 frecuzrdgrrn.2 . . . . . . . . . . 11  |-  R  = frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  S  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. )
83, 4, 5, 6, 7frecuzrdgrcl 10412 . . . . . . . . . 10  |-  ( ph  ->  R : om --> ( (
ZZ>= `  C )  X.  S ) )
9 ffn 5367 . . . . . . . . . 10  |-  ( R : om --> ( (
ZZ>= `  C )  X.  S )  ->  R  Fn  om )
10 fvelrnb 5565 . . . . . . . . . 10  |-  ( R  Fn  om  ->  (
z  e.  ran  R  <->  E. w  e.  om  ( R `  w )  =  z ) )
118, 9, 103syl 17 . . . . . . . . 9  |-  ( ph  ->  ( z  e.  ran  R  <->  E. w  e.  om  ( R `  w )  =  z ) )
122, 11bitrd 188 . . . . . . . 8  |-  ( ph  ->  ( z  e.  T  <->  E. w  e.  om  ( R `  w )  =  z ) )
133, 4, 5, 6, 7frecuzrdgrrn 10410 . . . . . . . . . 10  |-  ( (
ph  /\  w  e.  om )  ->  ( R `  w )  e.  ( ( ZZ>= `  C )  X.  S ) )
14 eleq1 2240 . . . . . . . . . 10  |-  ( ( R `  w )  =  z  ->  (
( R `  w
)  e.  ( (
ZZ>= `  C )  X.  S )  <->  z  e.  ( ( ZZ>= `  C
)  X.  S ) ) )
1513, 14syl5ibcom 155 . . . . . . . . 9  |-  ( (
ph  /\  w  e.  om )  ->  ( ( R `  w )  =  z  ->  z  e.  ( ( ZZ>= `  C
)  X.  S ) ) )
1615rexlimdva 2594 . . . . . . . 8  |-  ( ph  ->  ( E. w  e. 
om  ( R `  w )  =  z  ->  z  e.  ( ( ZZ>= `  C )  X.  S ) ) )
1712, 16sylbid 150 . . . . . . 7  |-  ( ph  ->  ( z  e.  T  ->  z  e.  ( (
ZZ>= `  C )  X.  S ) ) )
1817ssrdv 3163 . . . . . 6  |-  ( ph  ->  T  C_  ( ( ZZ>=
`  C )  X.  S ) )
19 xpss 4736 . . . . . 6  |-  ( (
ZZ>= `  C )  X.  S )  C_  ( _V  X.  _V )
2018, 19sstrdi 3169 . . . . 5  |-  ( ph  ->  T  C_  ( _V  X.  _V ) )
21 df-rel 4635 . . . . 5  |-  ( Rel 
T  <->  T  C_  ( _V 
X.  _V ) )
2220, 21sylibr 134 . . . 4  |-  ( ph  ->  Rel  T )
233, 4frec2uzf1od 10408 . . . . . . . . . . 11  |-  ( ph  ->  G : om -1-1-onto-> ( ZZ>= `  C )
)
24 f1ocnvdm 5784 . . . . . . . . . . 11  |-  ( ( G : om -1-1-onto-> ( ZZ>= `  C )  /\  v  e.  ( ZZ>=
`  C ) )  ->  ( `' G `  v )  e.  om )
2523, 24sylan 283 . . . . . . . . . 10  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  ( `' G `  v )  e.  om )
263, 4, 5, 6, 7frecuzrdgrrn 10410 . . . . . . . . . 10  |-  ( (
ph  /\  ( `' G `  v )  e.  om )  ->  ( R `  ( `' G `  v )
)  e.  ( (
ZZ>= `  C )  X.  S ) )
2725, 26syldan 282 . . . . . . . . 9  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  ( R `  ( `' G `  v ) )  e.  ( ( ZZ>= `  C
)  X.  S ) )
28 xp2nd 6169 . . . . . . . . 9  |-  ( ( R `  ( `' G `  v ) )  e.  ( (
ZZ>= `  C )  X.  S )  ->  ( 2nd `  ( R `  ( `' G `  v ) ) )  e.  S
)
2927, 28syl 14 . . . . . . . 8  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  ( 2nd `  ( R `  ( `' G `  v ) ) )  e.  S
)
301eleq2d 2247 . . . . . . . . . . . 12  |-  ( ph  ->  ( <. v ,  z
>.  e.  T  <->  <. v ,  z >.  e.  ran  R ) )
31 fvelrnb 5565 . . . . . . . . . . . . 13  |-  ( R  Fn  om  ->  ( <. v ,  z >.  e.  ran  R  <->  E. w  e.  om  ( R `  w )  =  <. v ,  z >. )
)
328, 9, 313syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  ( <. v ,  z
>.  e.  ran  R  <->  E. w  e.  om  ( R `  w )  =  <. v ,  z >. )
)
3330, 32bitrd 188 . . . . . . . . . . 11  |-  ( ph  ->  ( <. v ,  z
>.  e.  T  <->  E. w  e.  om  ( R `  w )  =  <. v ,  z >. )
)
343adantr 276 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  w  e.  om )  ->  C  e.  ZZ )
355adantr 276 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  w  e.  om )  ->  A  e.  S )
366adantlr 477 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  w  e.  om )  /\  (
x  e.  ( ZZ>= `  C )  /\  y  e.  S ) )  -> 
( x F y )  e.  S )
37 simpr 110 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  w  e.  om )  ->  w  e.  om )
3834, 4, 35, 36, 7, 37frec2uzrdg 10411 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  w  e.  om )  ->  ( R `  w )  =  <. ( G `  w ) ,  ( 2nd `  ( R `  w )
) >. )
3938eqeq1d 2186 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  w  e.  om )  ->  ( ( R `  w )  =  <. v ,  z
>. 
<-> 
<. ( G `  w
) ,  ( 2nd `  ( R `  w
) ) >.  =  <. v ,  z >. )
)
40 vex 2742 . . . . . . . . . . . . . . . . . . . 20  |-  v  e. 
_V
41 vex 2742 . . . . . . . . . . . . . . . . . . . 20  |-  z  e. 
_V
4240, 41opth2 4242 . . . . . . . . . . . . . . . . . . 19  |-  ( <.
( G `  w
) ,  ( 2nd `  ( R `  w
) ) >.  =  <. v ,  z >.  <->  ( ( G `  w )  =  v  /\  ( 2nd `  ( R `  w ) )  =  z ) )
4342simplbi 274 . . . . . . . . . . . . . . . . . 18  |-  ( <.
( G `  w
) ,  ( 2nd `  ( R `  w
) ) >.  =  <. v ,  z >.  ->  ( G `  w )  =  v )
4439, 43biimtrdi 163 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  w  e.  om )  ->  ( ( R `  w )  =  <. v ,  z
>.  ->  ( G `  w )  =  v ) )
45 f1ocnvfv 5782 . . . . . . . . . . . . . . . . . 18  |-  ( ( G : om -1-1-onto-> ( ZZ>= `  C )  /\  w  e.  om )  ->  ( ( G `
 w )  =  v  ->  ( `' G `  v )  =  w ) )
4623, 45sylan 283 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  w  e.  om )  ->  ( ( G `  w )  =  v  ->  ( `' G `  v )  =  w ) )
4744, 46syld 45 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  w  e.  om )  ->  ( ( R `  w )  =  <. v ,  z
>.  ->  ( `' G `  v )  =  w ) )
48 fveq2 5517 . . . . . . . . . . . . . . . . 17  |-  ( ( `' G `  v )  =  w  ->  ( R `  ( `' G `  v )
)  =  ( R `
 w ) )
4948fveq2d 5521 . . . . . . . . . . . . . . . 16  |-  ( ( `' G `  v )  =  w  ->  ( 2nd `  ( R `  ( `' G `  v ) ) )  =  ( 2nd `  ( R `
 w ) ) )
5047, 49syl6 33 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  w  e.  om )  ->  ( ( R `  w )  =  <. v ,  z
>.  ->  ( 2nd `  ( R `  ( `' G `  v )
) )  =  ( 2nd `  ( R `
 w ) ) ) )
5150imp 124 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  w  e.  om )  /\  ( R `  w )  =  <. v ,  z
>. )  ->  ( 2nd `  ( R `  ( `' G `  v ) ) )  =  ( 2nd `  ( R `
 w ) ) )
5240, 41op2ndd 6152 . . . . . . . . . . . . . . 15  |-  ( ( R `  w )  =  <. v ,  z
>.  ->  ( 2nd `  ( R `  w )
)  =  z )
5352adantl 277 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  w  e.  om )  /\  ( R `  w )  =  <. v ,  z
>. )  ->  ( 2nd `  ( R `  w
) )  =  z )
5451, 53eqtr2d 2211 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  w  e.  om )  /\  ( R `  w )  =  <. v ,  z
>. )  ->  z  =  ( 2nd `  ( R `  ( `' G `  v )
) ) )
5554ex 115 . . . . . . . . . . . 12  |-  ( (
ph  /\  w  e.  om )  ->  ( ( R `  w )  =  <. v ,  z
>.  ->  z  =  ( 2nd `  ( R `
 ( `' G `  v ) ) ) ) )
5655rexlimdva 2594 . . . . . . . . . . 11  |-  ( ph  ->  ( E. w  e. 
om  ( R `  w )  =  <. v ,  z >.  ->  z  =  ( 2nd `  ( R `  ( `' G `  v )
) ) ) )
5733, 56sylbid 150 . . . . . . . . . 10  |-  ( ph  ->  ( <. v ,  z
>.  e.  T  ->  z  =  ( 2nd `  ( R `  ( `' G `  v )
) ) ) )
5857alrimiv 1874 . . . . . . . . 9  |-  ( ph  ->  A. z ( <.
v ,  z >.  e.  T  ->  z  =  ( 2nd `  ( R `  ( `' G `  v )
) ) ) )
5958adantr 276 . . . . . . . 8  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  A. z
( <. v ,  z
>.  e.  T  ->  z  =  ( 2nd `  ( R `  ( `' G `  v )
) ) ) )
60 eqeq2 2187 . . . . . . . . . . 11  |-  ( w  =  ( 2nd `  ( R `  ( `' G `  v )
) )  ->  (
z  =  w  <->  z  =  ( 2nd `  ( R `
 ( `' G `  v ) ) ) ) )
6160imbi2d 230 . . . . . . . . . 10  |-  ( w  =  ( 2nd `  ( R `  ( `' G `  v )
) )  ->  (
( <. v ,  z
>.  e.  T  ->  z  =  w )  <->  ( <. v ,  z >.  e.  T  ->  z  =  ( 2nd `  ( R `  ( `' G `  v ) ) ) ) ) )
6261albidv 1824 . . . . . . . . 9  |-  ( w  =  ( 2nd `  ( R `  ( `' G `  v )
) )  ->  ( A. z ( <. v ,  z >.  e.  T  ->  z  =  w )  <->  A. z ( <. v ,  z >.  e.  T  ->  z  =  ( 2nd `  ( R `  ( `' G `  v ) ) ) ) ) )
6362spcegv 2827 . . . . . . . 8  |-  ( ( 2nd `  ( R `
 ( `' G `  v ) ) )  e.  S  ->  ( A. z ( <. v ,  z >.  e.  T  ->  z  =  ( 2nd `  ( R `  ( `' G `  v ) ) ) )  ->  E. w A. z (
<. v ,  z >.  e.  T  ->  z  =  w ) ) )
6429, 59, 63sylc 62 . . . . . . 7  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  E. w A. z ( <. v ,  z >.  e.  T  ->  z  =  w ) )
65 nfv 1528 . . . . . . . 8  |-  F/ w <. v ,  z >.  e.  T
6665mo2r 2078 . . . . . . 7  |-  ( E. w A. z (
<. v ,  z >.  e.  T  ->  z  =  w )  ->  E* z <. v ,  z
>.  e.  T )
6764, 66syl 14 . . . . . 6  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  E* z <. v ,  z >.  e.  T )
68 dmss 4828 . . . . . . . . . . 11  |-  ( T 
C_  ( ( ZZ>= `  C )  X.  S
)  ->  dom  T  C_  dom  ( ( ZZ>= `  C
)  X.  S ) )
6918, 68syl 14 . . . . . . . . . 10  |-  ( ph  ->  dom  T  C_  dom  ( ( ZZ>= `  C
)  X.  S ) )
70 dmxpss 5061 . . . . . . . . . 10  |-  dom  (
( ZZ>= `  C )  X.  S )  C_  ( ZZ>=
`  C )
7169, 70sstrdi 3169 . . . . . . . . 9  |-  ( ph  ->  dom  T  C_  ( ZZ>=
`  C ) )
723adantr 276 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  C  e.  ZZ )
735adantr 276 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  A  e.  S )
746adantlr 477 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  v  e.  ( ZZ>= `  C )
)  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S
) )  ->  (
x F y )  e.  S )
75 simpr 110 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  v  e.  ( ZZ>= `  C )
)
7672, 4, 73, 74, 7, 75frecuzrdglem 10413 . . . . . . . . . . . . 13  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  <. v ,  ( 2nd `  ( R `  ( `' G `  v )
) ) >.  e.  ran  R )
771eleq2d 2247 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( <. v ,  ( 2nd `  ( R `
 ( `' G `  v ) ) )
>.  e.  T  <->  <. v ,  ( 2nd `  ( R `  ( `' G `  v )
) ) >.  e.  ran  R ) )
7877adantr 276 . . . . . . . . . . . . 13  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  ( <. v ,  ( 2nd `  ( R `  ( `' G `  v )
) ) >.  e.  T  <->  <.
v ,  ( 2nd `  ( R `  ( `' G `  v ) ) ) >.  e.  ran  R ) )
7976, 78mpbird 167 . . . . . . . . . . . 12  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  <. v ,  ( 2nd `  ( R `  ( `' G `  v )
) ) >.  e.  T
)
80 opeldmg 4834 . . . . . . . . . . . . 13  |-  ( ( v  e.  _V  /\  ( 2nd `  ( R `
 ( `' G `  v ) ) )  e.  S )  -> 
( <. v ,  ( 2nd `  ( R `
 ( `' G `  v ) ) )
>.  e.  T  ->  v  e.  dom  T ) )
8140, 80mpan 424 . . . . . . . . . . . 12  |-  ( ( 2nd `  ( R `
 ( `' G `  v ) ) )  e.  S  ->  ( <. v ,  ( 2nd `  ( R `  ( `' G `  v ) ) ) >.  e.  T  ->  v  e.  dom  T
) )
8229, 79, 81sylc 62 . . . . . . . . . . 11  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  v  e.  dom  T )
8382ex 115 . . . . . . . . . 10  |-  ( ph  ->  ( v  e.  (
ZZ>= `  C )  -> 
v  e.  dom  T
) )
8483ssrdv 3163 . . . . . . . . 9  |-  ( ph  ->  ( ZZ>= `  C )  C_ 
dom  T )
8571, 84eqssd 3174 . . . . . . . 8  |-  ( ph  ->  dom  T  =  (
ZZ>= `  C ) )
8685eleq2d 2247 . . . . . . 7  |-  ( ph  ->  ( v  e.  dom  T  <-> 
v  e.  ( ZZ>= `  C ) ) )
8786pm5.32i 454 . . . . . 6  |-  ( (
ph  /\  v  e.  dom  T )  <->  ( ph  /\  v  e.  ( ZZ>= `  C ) ) )
88 df-br 4006 . . . . . . 7  |-  ( v T z  <->  <. v ,  z >.  e.  T
)
8988mobii 2063 . . . . . 6  |-  ( E* z  v T z  <->  E* z <. v ,  z
>.  e.  T )
9067, 87, 893imtr4i 201 . . . . 5  |-  ( (
ph  /\  v  e.  dom  T )  ->  E* z  v T z )
9190ralrimiva 2550 . . . 4  |-  ( ph  ->  A. v  e.  dom  T E* z  v T z )
92 dffun7 5245 . . . 4  |-  ( Fun 
T  <->  ( Rel  T  /\  A. v  e.  dom  T E* z  v T z ) )
9322, 91, 92sylanbrc 417 . . 3  |-  ( ph  ->  Fun  T )
94 df-fn 5221 . . 3  |-  ( T  Fn  ( ZZ>= `  C
)  <->  ( Fun  T  /\  dom  T  =  (
ZZ>= `  C ) ) )
9593, 85, 94sylanbrc 417 . 2  |-  ( ph  ->  T  Fn  ( ZZ>= `  C ) )
96 rnss 4859 . . . 4  |-  ( T 
C_  ( ( ZZ>= `  C )  X.  S
)  ->  ran  T  C_  ran  ( ( ZZ>= `  C
)  X.  S ) )
9718, 96syl 14 . . 3  |-  ( ph  ->  ran  T  C_  ran  ( ( ZZ>= `  C
)  X.  S ) )
98 rnxpss 5062 . . 3  |-  ran  (
( ZZ>= `  C )  X.  S )  C_  S
9997, 98sstrdi 3169 . 2  |-  ( ph  ->  ran  T  C_  S
)
100 df-f 5222 . 2  |-  ( T : ( ZZ>= `  C
) --> S  <->  ( T  Fn  ( ZZ>= `  C )  /\  ran  T  C_  S
) )
10195, 99, 100sylanbrc 417 1  |-  ( ph  ->  T : ( ZZ>= `  C ) --> S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1351    = wceq 1353   E.wex 1492   E*wmo 2027    e. wcel 2148   A.wral 2455   E.wrex 2456   _Vcvv 2739    C_ wss 3131   <.cop 3597   class class class wbr 4005    |-> cmpt 4066   omcom 4591    X. cxp 4626   `'ccnv 4627   dom cdm 4628   ran crn 4629   Rel wrel 4633   Fun wfun 5212    Fn wfn 5213   -->wf 5214   -1-1-onto->wf1o 5217   ` cfv 5218  (class class class)co 5877    e. cmpo 5879   2ndc2nd 6142  freccfrec 6393   1c1 7814    + caddc 7816   ZZcz 9255   ZZ>=cuz 9530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-addass 7915  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-0id 7921  ax-rnegex 7922  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-ltadd 7929
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-frec 6394  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-inn 8922  df-n0 9179  df-z 9256  df-uz 9531
This theorem is referenced by:  frecuzrdg0  10415  frecuzrdgsuc  10416
  Copyright terms: Public domain W3C validator