ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dffun5r Unicode version

Theorem dffun5r 5200
Description: A way of proving a relation is a function, analogous to mo2r 2066. (Contributed by Jim Kingdon, 27-May-2020.)
Assertion
Ref Expression
dffun5r  |-  ( ( Rel  A  /\  A. x E. z A. y
( <. x ,  y
>.  e.  A  ->  y  =  z ) )  ->  Fun  A )
Distinct variable group:    x, y, z, A

Proof of Theorem dffun5r
StepHypRef Expression
1 nfv 1516 . . . . . 6  |-  F/ z
<. x ,  y >.  e.  A
21mo2r 2066 . . . . 5  |-  ( E. z A. y (
<. x ,  y >.  e.  A  ->  y  =  z )  ->  E* y <. x ,  y
>.  e.  A )
3 opeq2 3759 . . . . . . 7  |-  ( y  =  z  ->  <. x ,  y >.  =  <. x ,  z >. )
43eleq1d 2235 . . . . . 6  |-  ( y  =  z  ->  ( <. x ,  y >.  e.  A  <->  <. x ,  z
>.  e.  A ) )
54mo4 2075 . . . . 5  |-  ( E* y <. x ,  y
>.  e.  A  <->  A. y A. z ( ( <.
x ,  y >.  e.  A  /\  <. x ,  z >.  e.  A
)  ->  y  =  z ) )
62, 5sylib 121 . . . 4  |-  ( E. z A. y (
<. x ,  y >.  e.  A  ->  y  =  z )  ->  A. y A. z ( ( <.
x ,  y >.  e.  A  /\  <. x ,  z >.  e.  A
)  ->  y  =  z ) )
76alimi 1443 . . 3  |-  ( A. x E. z A. y
( <. x ,  y
>.  e.  A  ->  y  =  z )  ->  A. x A. y A. z ( ( <.
x ,  y >.  e.  A  /\  <. x ,  z >.  e.  A
)  ->  y  =  z ) )
87anim2i 340 . 2  |-  ( ( Rel  A  /\  A. x E. z A. y
( <. x ,  y
>.  e.  A  ->  y  =  z ) )  ->  ( Rel  A  /\  A. x A. y A. z ( ( <.
x ,  y >.  e.  A  /\  <. x ,  z >.  e.  A
)  ->  y  =  z ) ) )
9 dffun4 5199 . 2  |-  ( Fun 
A  <->  ( Rel  A  /\  A. x A. y A. z ( ( <.
x ,  y >.  e.  A  /\  <. x ,  z >.  e.  A
)  ->  y  =  z ) ) )
108, 9sylibr 133 1  |-  ( ( Rel  A  /\  A. x E. z A. y
( <. x ,  y
>.  e.  A  ->  y  =  z ) )  ->  Fun  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103   A.wal 1341   E.wex 1480   E*wmo 2015    e. wcel 2136   <.cop 3579   Rel wrel 4609   Fun wfun 5182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-id 4271  df-cnv 4612  df-co 4613  df-fun 5190
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator