ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dffun5r Unicode version

Theorem dffun5r 5210
Description: A way of proving a relation is a function, analogous to mo2r 2071. (Contributed by Jim Kingdon, 27-May-2020.)
Assertion
Ref Expression
dffun5r  |-  ( ( Rel  A  /\  A. x E. z A. y
( <. x ,  y
>.  e.  A  ->  y  =  z ) )  ->  Fun  A )
Distinct variable group:    x, y, z, A

Proof of Theorem dffun5r
StepHypRef Expression
1 nfv 1521 . . . . . 6  |-  F/ z
<. x ,  y >.  e.  A
21mo2r 2071 . . . . 5  |-  ( E. z A. y (
<. x ,  y >.  e.  A  ->  y  =  z )  ->  E* y <. x ,  y
>.  e.  A )
3 opeq2 3766 . . . . . . 7  |-  ( y  =  z  ->  <. x ,  y >.  =  <. x ,  z >. )
43eleq1d 2239 . . . . . 6  |-  ( y  =  z  ->  ( <. x ,  y >.  e.  A  <->  <. x ,  z
>.  e.  A ) )
54mo4 2080 . . . . 5  |-  ( E* y <. x ,  y
>.  e.  A  <->  A. y A. z ( ( <.
x ,  y >.  e.  A  /\  <. x ,  z >.  e.  A
)  ->  y  =  z ) )
62, 5sylib 121 . . . 4  |-  ( E. z A. y (
<. x ,  y >.  e.  A  ->  y  =  z )  ->  A. y A. z ( ( <.
x ,  y >.  e.  A  /\  <. x ,  z >.  e.  A
)  ->  y  =  z ) )
76alimi 1448 . . 3  |-  ( A. x E. z A. y
( <. x ,  y
>.  e.  A  ->  y  =  z )  ->  A. x A. y A. z ( ( <.
x ,  y >.  e.  A  /\  <. x ,  z >.  e.  A
)  ->  y  =  z ) )
87anim2i 340 . 2  |-  ( ( Rel  A  /\  A. x E. z A. y
( <. x ,  y
>.  e.  A  ->  y  =  z ) )  ->  ( Rel  A  /\  A. x A. y A. z ( ( <.
x ,  y >.  e.  A  /\  <. x ,  z >.  e.  A
)  ->  y  =  z ) ) )
9 dffun4 5209 . 2  |-  ( Fun 
A  <->  ( Rel  A  /\  A. x A. y A. z ( ( <.
x ,  y >.  e.  A  /\  <. x ,  z >.  e.  A
)  ->  y  =  z ) ) )
108, 9sylibr 133 1  |-  ( ( Rel  A  /\  A. x E. z A. y
( <. x ,  y
>.  e.  A  ->  y  =  z ) )  ->  Fun  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103   A.wal 1346   E.wex 1485   E*wmo 2020    e. wcel 2141   <.cop 3586   Rel wrel 4616   Fun wfun 5192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-opab 4051  df-id 4278  df-cnv 4619  df-co 4620  df-fun 5200
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator