ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dffun5r Unicode version

Theorem dffun5r 5093
Description: A way of proving a relation is a function, analogous to mo2r 2027. (Contributed by Jim Kingdon, 27-May-2020.)
Assertion
Ref Expression
dffun5r  |-  ( ( Rel  A  /\  A. x E. z A. y
( <. x ,  y
>.  e.  A  ->  y  =  z ) )  ->  Fun  A )
Distinct variable group:    x, y, z, A

Proof of Theorem dffun5r
StepHypRef Expression
1 nfv 1491 . . . . . 6  |-  F/ z
<. x ,  y >.  e.  A
21mo2r 2027 . . . . 5  |-  ( E. z A. y (
<. x ,  y >.  e.  A  ->  y  =  z )  ->  E* y <. x ,  y
>.  e.  A )
3 opeq2 3672 . . . . . . 7  |-  ( y  =  z  ->  <. x ,  y >.  =  <. x ,  z >. )
43eleq1d 2183 . . . . . 6  |-  ( y  =  z  ->  ( <. x ,  y >.  e.  A  <->  <. x ,  z
>.  e.  A ) )
54mo4 2036 . . . . 5  |-  ( E* y <. x ,  y
>.  e.  A  <->  A. y A. z ( ( <.
x ,  y >.  e.  A  /\  <. x ,  z >.  e.  A
)  ->  y  =  z ) )
62, 5sylib 121 . . . 4  |-  ( E. z A. y (
<. x ,  y >.  e.  A  ->  y  =  z )  ->  A. y A. z ( ( <.
x ,  y >.  e.  A  /\  <. x ,  z >.  e.  A
)  ->  y  =  z ) )
76alimi 1414 . . 3  |-  ( A. x E. z A. y
( <. x ,  y
>.  e.  A  ->  y  =  z )  ->  A. x A. y A. z ( ( <.
x ,  y >.  e.  A  /\  <. x ,  z >.  e.  A
)  ->  y  =  z ) )
87anim2i 337 . 2  |-  ( ( Rel  A  /\  A. x E. z A. y
( <. x ,  y
>.  e.  A  ->  y  =  z ) )  ->  ( Rel  A  /\  A. x A. y A. z ( ( <.
x ,  y >.  e.  A  /\  <. x ,  z >.  e.  A
)  ->  y  =  z ) ) )
9 dffun4 5092 . 2  |-  ( Fun 
A  <->  ( Rel  A  /\  A. x A. y A. z ( ( <.
x ,  y >.  e.  A  /\  <. x ,  z >.  e.  A
)  ->  y  =  z ) ) )
108, 9sylibr 133 1  |-  ( ( Rel  A  /\  A. x E. z A. y
( <. x ,  y
>.  e.  A  ->  y  =  z ) )  ->  Fun  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103   A.wal 1312   E.wex 1451    e. wcel 1463   E*wmo 1976   <.cop 3496   Rel wrel 4504   Fun wfun 5075
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4006  ax-pow 4058  ax-pr 4091
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ral 2395  df-v 2659  df-un 3041  df-in 3043  df-ss 3050  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-br 3896  df-opab 3950  df-id 4175  df-cnv 4507  df-co 4508  df-fun 5083
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator