ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dffun5r Unicode version

Theorem dffun5r 5266
Description: A way of proving a relation is a function, analogous to mo2r 2094. (Contributed by Jim Kingdon, 27-May-2020.)
Assertion
Ref Expression
dffun5r  |-  ( ( Rel  A  /\  A. x E. z A. y
( <. x ,  y
>.  e.  A  ->  y  =  z ) )  ->  Fun  A )
Distinct variable group:    x, y, z, A

Proof of Theorem dffun5r
StepHypRef Expression
1 nfv 1539 . . . . . 6  |-  F/ z
<. x ,  y >.  e.  A
21mo2r 2094 . . . . 5  |-  ( E. z A. y (
<. x ,  y >.  e.  A  ->  y  =  z )  ->  E* y <. x ,  y
>.  e.  A )
3 opeq2 3805 . . . . . . 7  |-  ( y  =  z  ->  <. x ,  y >.  =  <. x ,  z >. )
43eleq1d 2262 . . . . . 6  |-  ( y  =  z  ->  ( <. x ,  y >.  e.  A  <->  <. x ,  z
>.  e.  A ) )
54mo4 2103 . . . . 5  |-  ( E* y <. x ,  y
>.  e.  A  <->  A. y A. z ( ( <.
x ,  y >.  e.  A  /\  <. x ,  z >.  e.  A
)  ->  y  =  z ) )
62, 5sylib 122 . . . 4  |-  ( E. z A. y (
<. x ,  y >.  e.  A  ->  y  =  z )  ->  A. y A. z ( ( <.
x ,  y >.  e.  A  /\  <. x ,  z >.  e.  A
)  ->  y  =  z ) )
76alimi 1466 . . 3  |-  ( A. x E. z A. y
( <. x ,  y
>.  e.  A  ->  y  =  z )  ->  A. x A. y A. z ( ( <.
x ,  y >.  e.  A  /\  <. x ,  z >.  e.  A
)  ->  y  =  z ) )
87anim2i 342 . 2  |-  ( ( Rel  A  /\  A. x E. z A. y
( <. x ,  y
>.  e.  A  ->  y  =  z ) )  ->  ( Rel  A  /\  A. x A. y A. z ( ( <.
x ,  y >.  e.  A  /\  <. x ,  z >.  e.  A
)  ->  y  =  z ) ) )
9 dffun4 5265 . 2  |-  ( Fun 
A  <->  ( Rel  A  /\  A. x A. y A. z ( ( <.
x ,  y >.  e.  A  /\  <. x ,  z >.  e.  A
)  ->  y  =  z ) ) )
108, 9sylibr 134 1  |-  ( ( Rel  A  /\  A. x E. z A. y
( <. x ,  y
>.  e.  A  ->  y  =  z ) )  ->  Fun  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   A.wal 1362   E.wex 1503   E*wmo 2043    e. wcel 2164   <.cop 3621   Rel wrel 4664   Fun wfun 5248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-id 4324  df-cnv 4667  df-co 4668  df-fun 5256
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator