Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dffun5r | Unicode version |
Description: A way of proving a relation is a function, analogous to mo2r 2055. (Contributed by Jim Kingdon, 27-May-2020.) |
Ref | Expression |
---|---|
dffun5r |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1505 | . . . . . 6 | |
2 | 1 | mo2r 2055 | . . . . 5 |
3 | opeq2 3738 | . . . . . . 7 | |
4 | 3 | eleq1d 2223 | . . . . . 6 |
5 | 4 | mo4 2064 | . . . . 5 |
6 | 2, 5 | sylib 121 | . . . 4 |
7 | 6 | alimi 1432 | . . 3 |
8 | 7 | anim2i 340 | . 2 |
9 | dffun4 5174 | . 2 | |
10 | 8, 9 | sylibr 133 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wal 1330 wex 1469 wmo 2004 wcel 2125 cop 3559 wrel 4584 wfun 5157 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-14 2128 ax-ext 2136 ax-sep 4078 ax-pow 4130 ax-pr 4164 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ral 2437 df-v 2711 df-un 3102 df-in 3104 df-ss 3111 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-br 3962 df-opab 4022 df-id 4248 df-cnv 4587 df-co 4588 df-fun 5165 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |